Press Alt + R to read the document text or Alt + P to download or print.
This document contains no pages.
HomeMy WebLinkAbout1645 Emma Spur - 246512303003Work Classification:Replace
1645 Emma Spur RD
Basalt CO 81621-
AddressOwner Information
Permit Status:Active
Project Address
246512303003
Permit Type:OWTS Permit
Permit NO.OWTS-3-18-18746
Expires:2/19/2019Issue Date:10/22/2018
Parcel No.
1645 EMMA SPUR
Private Wastewater
System
Environmental Health
Department
P.O.Box 179
500 Broadway
Eagle, CO 81631-0179
Phone: (970)328-8755
Fax: (970)328-8788
Phone:(970)927-4772
Cell:(970)927-4772
Inspection
For Inspections call:(970)328-8755
Inspections:
IVR
OWTS Final Inspection 095
PhoneEngineer(s)
(970)704-0484All Service Septic
Contractor(s)Phone Primary ContractorLicense Number
Avalanche Excavation (970)379-5258 Yes18-18
James Dykann
Permitted Construction /Details:
This OWTS Permit is being amended to include the additional design specifications incorporated into the
All Service Septic, LLC design packet dated August 26,2018, stamped and signed by Richard H.Petz, PE.
All Service Septic, LLC previously submitted a design and received permission to install a 1,500 gallon
Roth poly septic tank as depicted in their March 1,2018 design to replace an existing, metal tank installed
when the residence was first constructed.Further investigation into the existing leach field determined
that it was not functioning.Therefore, this project and OWTS Permit will result in the complete
replacement of the existing septic system installed in1973.The new OWTS is designed to serve a 5
bedroom residence.
The OWTS consists of a 1,500 gallon Roth poly two compartment tank, followed by an Infiltrator IM540
(or equivalent Roth model),500 gallon poly pump chamber with an Orenco PF3005 placed within a
Biotube ProPak delivering approximately 80 gallons of effluent to two,12' X 31.5', three-foot thick unlined
sand filters constructed using "secondary"sand for a total soil treatment area of756 square feet.An
Orenco Automatic Distributing Valve (model 6402)located at the high point of th system will alternate
doses of effluent between the two sand filters.Specifications regarding the pipe materials, bedding,
orifice size and spacing along with shielding are included in the design packet.Crossings and
encroachments must be mitigated as depicted in the design.All existing OWTS components must be
abandoned in accordance with 43.9 (C.).
Contact Eagle County Environmental Health and the design engineer at least48 hours in advance of
requesting inspections.The design engineer must conduct all inspections necessary to certify proper
installation.System certification along with photos and a record drawing are required to be submitted to,
and approved by, Eagle County Environmental Health prior tot he use of the system.
Issued by:Environmental Health Department, Eagle County, CO
October 22, 2018
Date
Customer Copy
Ray Merry
CONDITIONS:
1.THIS PERMIT EXPIRES BY TIME LIMITATION AND BECOMES NULL AND VOID IF THE WORK AUTHORIZED BY THE PERMIT IS NOT
COMMENCED WITHIN 120 DAYS OF ISSUANCE, OR BEFORE THE EXPIRATION OF AN ASSOCIATED BUILDING PERMIT
2.ALL INSTALLATIONS MUST COMPLY WITH ALL REQUIREMENTS OF THE EAGLE COUNTY INDIVIDUAL SEWAGE DISPOSAL SYSTEM
REGULATIONS ADOPTED PURSUANT TO AUTHORITY GRANTED IN C.R.S.25-10-101,et seq., AS AMENDED
3.THIS PERMIT IS VALID ONLY FOR CONNECTION TO STRUCTURES WHICH HAVE FULLY COMPLIED WITH COUNTY ZONING AND
BUILDING REQUIREMENTS.CONNECTION TO, OR USE WITH ANY DWELLING OR STRUCTURE NOT APPROVED BY THE ZONING AND
BUILDING DEPARTMENTS SHALL AUTOMATICALLY BE A VIOLATION OF A REQUIREMENT OF THE PERMIT, AND WILL RESULT IN
BOTH LEGAL ACTION AND REVOCATION OF THE PERMIT
4.CHAPTER IV, SECTION 4.03.29REQUIRES ANY PERSON WHO CONSTRUCTS, ALTERS OR INSTALLS AN INDIVIDUAL SEWAGE DISPOSAL
SYSTEM TO BE LICENSED
Additional check received on 10/17/2018
$400 - check # 0112
$400.-
August 19th, 2019
Mr. James Dykann
1645 Emma Spur Rd
Basalt, CO. 81621
RE: Final approval of the: Septic System Installation, OWTS-3-18-18746 Property location: 1645
Emma Spur Road, Eagle Area.
Mr. Dykann:
This letter is to inform you that the above-referenced, OWTS-3-18-18746 permit, has been
inspected and finalized. This OWTS permit was approved and sized to serve a five (5) bedroom
residence.
Additional information about the maintenance your septic system needs can be accessed
through our website links, provided on the Environmental Health Department’s septic system
resource page.
Be aware that changes in the use of your property or alterations of your building may require
commensurate changes to, or relocation of, your septic system . Landscape features, trees with
tap roots, irrigation systems and parking areas above the soil treatment area can cause
premature system failure. It is equally important that you notice and immediately repair
dripping faucets and hissing toilets as this will certainly cause the system to fail.
If you have any questions regarding this information, please contact us at (970) 328-8755 and
reference the OWTS septic permit number.
Best Regards,
Giovanna Harkay.
Administrative Fiscal Tech IV
Attachments: Certification Letter and Design – Septic System Flyer – Final Letter
PUBLIC HEALTH & ENVIRONMENT
(970) 328-8755
FAX: (970) 328-8788
Environment@eaglecounty.us
August 7, 2019 Project No. C1359
Jim Dykann
jdkann@yahoo.com
Onsite Wastewater Treatment System (OWTS) Installation Observations
1645 Emma Spur
Eagle County, Colorado
Permit Number OWTS-3-18-18746
Jim,
ALL SERVICE septic, LLC observed the installation of the onsite wastewater treatment system (OWTS)
on June 5 and 6, 2018 for the initial septic tank replacement. Avalanche Excavation installed the new
septic tank. After determining the soil treatment area (STA) was not functioning, an amended permit was
issued for replacement of the STA. Installation observations were made on November 5, 2018 and May
29, 2019. Altitude Septic installed the new pump tank and STA.
The existing metal septic tank was pumped and removed. The existing STA was abandoned in place.
Attempts were made to locate the water line; however, they were unsuccessful. The approximate
location of the water line was described by you, the property owner. The pump line was encased
approximately 20-feet on each side of the described water line location. The ditch was placed in a culvert
within 50-feet of the new STA.
The system installation included a new 1500-gallon, two-compartment Roth poly septic tank (Avalanche
Excavation) with an effluent filter in on the outlet tee. This filter must be cleaned annually, or as
needed. Additional system components were installed by Altitude Septic, including a 500-gallon, poly
Infiltrator® pump chamber with an Orenco® Biotube Pump Vault and an Orenco® PF3005 pump. The
filter in the pump chamber must also be cleaned annually, or as needed. The floats were set to dose
approximately 80 gallons each pump cycle, allowing for approximately 10 gallons of drain back after each
pump cycle. The control panel for the pump is located on the north side of the residence, within line of sight
of the septic tank. Valley Precast out of Buena Vista performed start-up of the pumping system.
Effluent is pressure dosed through a 1.5-inch diameter pump line to an Orenco® automatic distributing valve
(ADV), model 6402. The ADV was placed at the high point in the system in an insulated riser with access
from grade.
Effluent is pressure dosed to two over-excavated, 12’ x 31.5’ unlined sand filters with 3-feet of sand filter
material (Secondary Sand). Pipes used to disperse the effluent were surrounded by washed coarse
screened gravel. Manifolds were 1.5-inches in diameter. Laterals were 1.5-inches in diameter with 5/32-
inch diameter orifice holes facing down, spaced 2-feet on center. Laterals start 2-feet from the sidewall of
the sand filter and the middle laterals were separated by 4-feet. Each 1.5-inch diameter lateral ends in a
sweeping ell facing up with a ball valve for flushing. A soil separation fabric was placed over the gravel
layer followed by approximately 1-foot of topsoil.
The OWTS was generally installed according to specifications. This observation is not a guarantee of
workmanship and/or parts and materials. ALL SERVICE septic, LLC should be notified if changes are
made to the OW TS in the future. Any additional OWTS construction must be according to the county
regulations.
LIMITS:
Observations are limited to components that are visible at the time of the inspection . The installer must
have documented and demonstrated knowledge of the requirements and regulations of the county in
which they are working. The quality of the installation is dependent of the expertise of the installer, soil
type, and weather conditions.
Please call with questions.
Sincerely,
ALL SERVICE septic, LLC Reviewed By:
Carla Ostberg, MPH, REHS Richard H. Petz,
Septic Tank Installation (Avalanche Excavation)
New sewer line from residence Existing metal septic tank removed
8/11/19
1500 gallon Roth poly septic tank New septic tank installed
Roth septic tank / lids to grade
Inlet tee Effluent filter on outlet tee
Remaining OWTS Installation (Altitude Septic)
Control panel view of new pump chamber (note Roth lids)
Pump chamber
ADV
Sand filter material going into over-ex / STA installed, separation fabric between gravel and topsoil
Backfill over STAs / inspection ports culvert installed within 50-feet of STA
Control panel tank lids / backfilled
View of pump chamber, looking toward STA view toward water source, near creek
Spring photos (2019)
End of culvert
Reveg. over STA and protection from traffic (boulders)
View of ADV lid looking toward septic tanks
Work Classification:Replace
1645 Emma Spur RD
Basalt CO 81621-
AddressOwner Information
Permit Status:Active
Project Address
246512303003
Permit Type:OWTS Permit
Permit NO.OWTS-3-18-18746
Expires:2/19/2019Issue Date:10/22/2018
Parcel No.
1645 EMMA SPUR
Private Wastewater
System
Environmental Health
Department
P.O.Box 179
500 Broadway
Eagle, CO 81631-0179
Phone: (970)328-8755
Fax: (970)328-8788
Phone:(970)927-4772
Cell:(970)927-4772
Inspection
For Inspections call:(970)328-8755
Inspections:
IVR
OWTS Final Inspection 095
PhoneEngineer(s)
(970)704-0484ALL SERVICE SEPTIC
Contractor(s)Phone Primary ContractorLicense Number
Altitude Septic, LLC (970)471-0913 Yes08-18 C4-18
James Dykann
Permitted Construction /Details:
This OWTS Permit is being amended to include the additional design specifications incorporated into the
All Service Septic, LLC design packet dated August 26,2018, stamped and signed by Richard H.Petz, PE.
All Service Septic, LLC previously submitted a design and received permission to install a 1,500 gallon
Roth poly septic tank as depicted in their March 1,2018 design to replace an existing, metal tank installed
when the residence was first constructed.Further investigation into the existing leach field determined
that it was not functioning.Therefore, this project and OWTS Permit will result in the complete
replacement of the existing septic system installed in1973.The new OWTS is designed to serve a 5
bedroom residence.
The OWTS consists of a 1,500 gallon Roth poly two compartment tank, followed by an Infiltrator IM540
(or equivalent Roth model),500 gallon poly pump chamber with an Orenco PF3005 placed within a
Biotube ProPak delivering approximately 80 gallons of effluent to two,12' X 31.5', three-foot thick unlined
sand filters constructed using "secondary"sand for a total soil treatment area of756 square feet.An
Orenco Automatic Distributing Valve (model 6402)located at the high point of th system will alternate
doses of effluent between the two sand filters.Specifications regarding the pipe materials, bedding,
orifice size and spacing along with shielding are included in the design packet.Crossings and
encroachments must be mitigated as depicted in the design.All existing OWTS components must be
abandoned in accordance with 43.9 (C.).
Contact Eagle County Environmental Health and the design engineer at least48 hours in advance of
requesting inspections.The design engineer must conduct all inspections necessary to certify proper
installation.System certification along with photos and a record drawing are required to be submitted to,
and approved by, Eagle County Environmental Health prior tot he use of the system.
Issued by:Environmental Health Department, Eagle County, CO
November 26, 2018
Date
Customer Copy
Ray Merry
CONDITIONS:
1.THIS PERMIT EXPIRES BY TIME LIMITATION AND BECOMES NULL AND VOID IF THE WORK AUTHORIZED BY THE PERMIT IS NOT
COMMENCED WITHIN 120 DAYS OF ISSUANCE, OR BEFORE THE EXPIRATION OF AN ASSOCIATED BUILDING PERMIT
2.ALL INSTALLATIONS MUST COMPLY WITH ALL REQUIREMENTS OF THE EAGLE COUNTY INDIVIDUAL SEWAGE DISPOSAL SYSTEM
REGULATIONS ADOPTED PURSUANT TO AUTHORITY GRANTED IN C.R.S.25-10-101,et seq., AS AMENDED
3.THIS PERMIT IS VALID ONLY FOR CONNECTION TO STRUCTURES WHICH HAVE FULLY COMPLIED WITH COUNTY ZONING AND
BUILDING REQUIREMENTS.CONNECTION TO, OR USE WITH ANY DWELLING OR STRUCTURE NOT APPROVED BY THE ZONING AND
BUILDING DEPARTMENTS SHALL AUTOMATICALLY BE A VIOLATION OF A REQUIREMENT OF THE PERMIT, AND WILL RESULT IN
BOTH LEGAL ACTION AND REVOCATION OF THE PERMIT
4.CHAPTER IV, SECTION 4.03.29REQUIRES ANY PERSON WHO CONSTRUCTS, ALTERS OR INSTALLS AN INDIVIDUAL SEWAGE DISPOSAL
SYSTEM TO BE LICENSED
832‐R‐13‐002
March 1, 2018 Project No. C1359
Jim Dykann
jdkann@yahoo.com
Septic Tank Replacement Design
1645 Emma Spur
Eagle County, Colorado
Jim,
ALL SERVICE septic, LLC has completed a septic tank replacement design for the subject residence.
The 2.43-acre property is located outside of Basalt, in an area where Onsite Wastewater Treatment
Systems (OW TS)s and wells are necessary.
The legal description of the property is Lot 3, Willoughby, Thomas, and Phillips Subdivision.
Parcel ID: 2465-123-03-003
SITE CONDITIONS
A 5-bedroom, single-family residence presently exists on the property and is utilizing an existing OWTS.
Eagle County Environmental Health Department was unable to locate documents pertaining to the
existing OWTS, likely due to age of the system.
The existing metal septic tank is showing signs of deterioration and there is a desire to replace the septic
tank.
The residence is served potable water by a private well, located on to the northwest of the exiting
residence, near Sopris Creek. The water line enters the property from the west and loops around the
existing STA, coming into the north side of the residence. This water line will be at least 25-feet from the
new septic tank.
DESIGN SPECIFICATIONS
The existing septic tank must be pumped and removed. A new, 4-inch diameter SDR-35 sewer line with
a double-sweep clean out will be run from the house to a new, 1500-gallon, two-compartment Roth®
poly, two-compartment septic tank. An Orenco® Biotube Jr. Effluent Filter must be installed on the outlet
tee of the septic tank. This filter must be cleaned annually, or as needed. Both manhole lids must be
brought to grade with risers for access.
If the existing sewer line from the septic tank to the existing soil treatment area (STA) is cast iron, or
found to be in poor condition, we recommend replacement with 4-inch SDR-35 sewer pipe.
At the time of the tank installation, at least 100-gallons of water should be run into the existing
STA to assure it is accepting effluent.
Page 2
The component manufacturers are typical of applications used by contractors and engineers in this area.
Alternatives may be considered or recommended by contacting our office. Construction must be
according to Eagle County On-Site Wastewater Treatment System Regulations, the OWTS Permit provided
by Eagle County Environmental Health Department, and this design.
OPERATION INFORMATION AND MAINTENANCE
The property owner shall be responsible for the operation and maintenance of each OWTS servicing the
property. The property owner is responsible for maintaining service contracts for manufactured units,
alternating STAs, and any other components needing maintenance.
Geo-fabrics or plastics should not be used over the STA. No heavy equipment, machinery, or materials
should be placed on the backfilled STA. Livestock should not graze on the STA. Plumbing fixtures should be
checked to ensure that no additional water is being discharged to OWTS. For example, a running toilet or
leaky faucet can discharge hundreds of gallons of water a day and harm a STA.
If an effluent filter or screen has been installed in the OWTS, we recommend this filter or screen be cleaned
annually, or as needed.
The homeowner should pump the septic tank every two years, or as needed gauged by measurement of
solids in the tank. Garbage disposal use should be minimized, and non-biodegradable materials should not
be placed into the OWTS. Grease should not be placed in household drains. Loading from a water softener
should not be discharged into the OWTS. No hazardous wastes should be directed into the OWTS.
Mechanical room drains should not discharge into the OWTS. The OWTS is engineered for domestic waste
only.
ADDITIONAL CONSTRUCTION NOTES
Excavation equipment must not drive in excavation of the STA due to the potential to compact soil.
Extensions should be placed on all septic tank components to allow access to them from existing grade.
Backfill over the STA must be uniform and granular with no material greater than minus 3-inch.
INSTALLATION OBSERVATIONS
ALL SERVICE septic, LLC must view the OWTS during construction. The OWTS observation should be
performed before backfill, after placement of OWTS components. Septic tanks, distribution devices,
pumps, dosing siphons, and other plumbing, as applicable, must also be observed. ALL SERVICE septic,
LLC should be notified 48 hours in advance to observe the installation.
Page 3
LIMITS:
The design is based on information submitted. All OWTS construction must be according to the county
regulations. Requirements not specified in this report must follow applicable county regulations. The
contractor should have documented and demonstrated knowledge of the requirements and regulations of
the county in which they are working. Licensing of Systems Contractors may be required by county
regulation.
Please call with questions.
Sincerely,
ALL SERVICE septic, LLC Reviewed By:
Carla Ostberg, MPH, REHS
• Has 5-10 times
more flow area
than other brands,
so lasts many
times longer
between clean-
ings, increasing
homeowner
satisfaction
• Installs in min-
utes inside new
or existing tanks;
extendible tee
handle for easy
removal
• Easy to clean by
simply hosing off
whenever the tank
needs pumping
• Removes about
two-thirds of sus-
pended solids, on
average, extending
drainfield life
• Corrosion-proof
construction, to
ensure long life
• Lifetime warranty
Residential Biotube® Effluent Filters
Applications
Our patented* 4-in. (100-mm) Biotube Effluent Filters, Biotube Jr., Biotube
Insert Filters, and Biotube Base Inlet Filters are ideal for residential septic
tanks and have a lifetime warranty. They prevent large solids from leaving
the tank, dramatically improving wastewater quality and extending the life
of residential drainfields.
Standard Features & Benefits
• Alarm available, to
signal the need for
cleaning
• Flow modulating
discharge orifices
available to limit
flow rate leaving
tank, mitigat-
ing surges and
increasing
retention time
• Custom and
commercial sizes
available
Effluent from the
relatively clear zone
of the septic tank,
between the scum
and sludge layers,
horizontally enters
the Biotube Effluent
Filter. Effluent then
enters the annular
space between the
housing and the
Biotubes, utilizing
the Biotubes’ entire
surface for filtering.
Particles larger than
the Biotube’s mesh
are prevented from
leaving the tank.
Optional
Features &
Benefits
Biotube
Filtering
Process
8-in. (200-mm)
Base Inlet Filter
4-in. (100-mm)
Insert Filter
4-in. (100-mm) Biotube Jr.
(4-in. Biotube cartridge avail-
able separately as Insert Filter)
Orenco’s superior effluent filters resist clogging better than all other brands. Our stan-
dard, full-sized 4-in. (100-mm) Biotube Effluent Filter provides maximum long-term
protection in a complete package, with housing. Our 4-in. (100-mm) Biotube Jr., at
half the size of our standard model, has more filtering capacity than the full-sized filters
sold by other manufacturers. For tanks with existing outlet tees, the Biotube Insert Filter
is ideal. And for low-profile tanks, there’s the Base Inlet Filter.
* Covered by patent numbers 5,492,635 and 4,439,323
4-in. (100-mm) Biotube Effluent Filter
APS-FT-1
Rev. 3.4 © 11/10
Orenco Systems®, Inc.
To Order
Call your nearest Orenco Systems®, Inc. distributor. For nearest distribu-
tor, call Orenco at 800-348-9843 or go to www.orenco.com and click on
“Distributor Locator.”
Nomenclatures
Riser
wall
Tank wall
Filter housing
Extendible PVC handle
Stainless steel set screws
Top seal plate
Air vents
Biotube® filter cartridge
Solid base
4-in. Biotube
Effluent Filter
4-in. Biotube Jr.
4-in. Biotube Filter (standard)
4-in. Biotube Jr. (includes cartridge and housing)
Distributed By:
8-in. Biotube Filter (base inlet model)
4-in. Biotube Filter Insert (cartridge only)
Junior series
FT J0418
Biotube effluent filter series
Filter diameter (inches)
Cartridge height (inches)
W = fits Type 3034 outlet tee
S = fits Schedule 40 outlet tee
Options:
Blank = no options
M = flow modulation plate installed
A = float bracket attached
Blank = 1/8" filtration
P = 1/16" filtration
Insert
FT i0418
Biotube effluent filter series
Filter diameter (inches)
Cartridge height (inches)
W = fits Type 3034 outlet tee
S = fits Schedule 40 outlet tee
-
For customized options (e.g., NC
indicates North Carolina regions)
-
Blank = 1/8" filtration
P = 1/16" filtration
FT 04
Biotube effluent filter series
Filter diameter (inches)
Housing height: 36" and 44" are standard
Options:
Blank = no options
M = flow modulation plate installed
A = float bracket attached
Cartridge height: 28" and 36" are standard
-
Blank = 1/8" filtration
P = 1/16" filtration
W = fits Type 3034 outlet pipe
S = fits Schedule 40 outlet pipe
FT 2208 14 B
Biotube effluent filter series
Housing height: 22" standard
Cartridge height: 14" standard
Options:
A = float bracket
FS = 2" outlet orifice
FSO = 2" outlet orifice and overflow plate*
Base inlet model
-
Blank = 1/8" filtration
P = 1/16" filtration
Filter diameter (inches)
08 = 8"
* Also available with coupling and sleeve as a “kit”: FT-OVERFLOWKIT
August 26, 2018 Project No. C1359
Jim Dykann
jdkann@yahoo.com
Subsurface Investigation and Onsite Wastewater Treatment System Design
1645 Emma Spur
Eagle County, Colorado
Jim,
ALL SERVICE septic, LLC has completed an onsite wastewater treatment system (OWTS) design for the
subject residence. The 2.43-acre property is located outside of Basalt, in an area where OW TSs and
wells are necessary.
The legal description of the property is Lot 3, Willoughby, Thomas, and Phillips Subdivision.
Parcel ID: 2465-123-03-003
SITE CONDITIONS
A 5-bedroom, single-family residence presently exists on the property and is utilizing an existing OWTS.
Eagle County Environmental Health Department was unable to locate documents pertaining to the
existing OWTS, likely due to age of the system.
The existing metal septic tank was recently replaced under Permit No. OWTS-3-18-18746. The existing
soil treatment area (STA) was tested by running approximately 100 gallons of water into the STA and it
was no longer accepting water or effluent.
The residence is served potable water by a private well, located on to the northwest of the existing
residence, near Sopris Creek. The water line enters the property from the west and loops around the
existing STA, coming into the north side of the residence. This water line will be at least 25-feet from the
new septic tank and STA. The new sewer line from the pump chamber will likely cross the existing water
line. The sewer line must be properly encased 5-feet of each side of the crossing (see Detail 3/ w4.0).
Several ditches and a pond are present on the property and minimize the property available for
replacement of the STA. There must be at least 50-feet from any ditch or pond on the property. If the
50-foot setback cannot be met to the ditch(es), they must be placed in a culvert or lined with minimum 30
mil liner.
Table 1 describes the minimum required setback of OWTS components to physical features on the
property compared to approximate, proposed setback distances.
Page 2
Table 1
OWTS Components and
Physical Features
Minimum Required Setback Approximate Proposed Setback
House to Septic Tank 5’ >5’
Septic Tank to Well 50’ <150’
Septic Tank to Water Course 50’ 65’
STA to House 20’ 90’
STA to Well 100’ <175
STA to Water Course 50’ 50’ (liner required)
SUBSURFACE
The subsurface was investigated on June 6, 2018 by digging two soil profile test pit excavations (Test Pits).
A visual and tactile soil analysis was completed by Carla Ostberg at the time of excavation.1
The materials encountered in the Test Pit #1 consisted of gray topsoil (which may have been imported),
underlain by medium brown loamy sand with more than 35% rock to a maximum depth explored of 6.5-
feet. No bedrock or groundwater was encountered.
The materials encountered in Test Pit #2 consisted of medium brown sandy loam to 2.5-feet, underlain
by light brown loamy sand with greater than 35% to a maximum depth explored of 6.5-feet. No bedrock
or groundwater was encountered.
Soils below the topsoil horizon are Soil Type 0 due to rock content. An over-excavated, unlined sand
filter is proposed. Locally available sand is Secondary Sand.
A long term acceptance rate (LTAR) of 0.8 gallons per square foot, will be used to design the
OWTS, in accordance Eagle County On-Site Wastewater Treatment System Regulations.
Approximate area of proposed STAs
1 Carla Ostberg holds a Certificate of Attendance and Examination from the CPOW Visual and Tactile
Evaluation of Soils Training.
Page 3
Test pit #1
Backfill Test Pit #2
Page 4
backfill
DESIGN SPECIFICATIONS
The existing STA will be abandoned in place.
Design Calculations:
3 bedrooms x 75 GPD x 2 people/bedroom + 150 GPD (4th and 5th bedrooms) = 600 GPD
STA Calculations = 600 GPD / 0.8 gallons/SF (Secondary Sand) = 750 SF
(2) 12’ x 31.5’ over-excavated, unlined sand filters (min. 3’ sand filter material)
A new, Roth® 1500-gallon, two-compartment poly septic tank was installed under Permit No. OWTS-3-
18-18746. An additional 500-gallon pump chamber with an Orenco® Biotube Pump Vault and an
Orenco® PF3005 pump must be installed after the existing septic tank. We have provided specifications
for an Infiltrator® septic tank; however, a Roth® tank may be used along with the necessary adapter to
house the Orenco® Pump Vault. The floats should be set to dose approximately 80 gallons each pump
cycle, allowing for approximately 10 gallons of drain back after each pump cycle. The control panel for the
pump must be located within line of sight of the septic tank. We recommend Valley Precast out of Buena
Vista be contracted for start-up of the pumping system.
Effluent will be pressure dosed through a 1.5-inch diameter pump line to an Orenco® automatic distributing
valve (ADV), model 6402. This pump line must have a minimum 1% grade for proper drain back into the
tank after each pump cycle. The ADV must be placed a high point in the system and be placed in an
insulated riser with access from grade. Screened rock must be placed below the ADV to support the ADV
and to assure the clear pipes existing the ADV remain visible for future inspection and maintenance.
Page 5
Effluent will be dosed to two over-excavated, 12’ x 31.5’ unlined sand filters with a minimum of 3-feet of sand
filter material (Secondary Sand). Sand filter material must be clean, coarse sand, all passing a screen
having four meshes to the inch. The sand must have an effective size between 0.15 and 0.60 mm. The
uniformity coefficient must be 7.0 or less. Material meeting ASTM 33, for concrete sand, with three percent
or less fines passing 200 mesh sieve may be used. A gradation of the sand media must be provided.
The gradation must be dated no more than one month prior to the installation date.
Pipes used to disperse the effluent must be surrounded by washed coarse screened gravel or crushed
stone. All of the gravel or stone must pass a 2 ½-inch screen and must be retained on a ¾-inch screen. The
manifold must be 1.5-inches in diameter. Laterals must be 1.5-inches in diameter with 5/32-inch diameter
orifice holes facing down, spaced 2-feet on center. Laterals must start 2-feet from the sidewall of the sand
filter and the middle laterals will be separated by 4-feet. Each 1.5-inch diameter lateral must end in a
sweeping ell facing up with a ball valve for flushing. A soil separation fabric should be placed over the
gravel layer followed by approximately 1-foot of topsoil or other suitable soil able to support vegetative
growth.
The component manufacturers are typical of applications used by contractors and engineers in this area.
Alternatives may be considered or recommended by contacting our office. Construction must be
according to Eagle County On-Site Wastewater Treatment System Regulations, the OWTS Permit provided
by Eagle County Environmental Health Department, and this design.
REVEGETATION REQUIREMENTS
An adequate layer of good quality topsoil capable of supporting revegetation shall be placed over the entire
disturbed area of the OWTS installation. A mixture of native grass seed that has good soil stabilizing
characteristics (but without taproots), provides a maximum transpiration rate, and competes well with
successional species. No trees or shrubs, or any vegetation requiring regular irritation shall be placed over
the area. Until vegetation is reestablished, erosion and sediment control measures shall be implemented
and maintained on site. The owner of the OWTS shall be responsible for maintaining proper vegetation
cover.
OPERATION INFORMATION AND MAINTENANCE
The property owner shall be responsible for the operation and maintenance of each OWTS servicing the
property. The property owner is responsible for maintaining service contracts for manufactured units,
alternating STAs, and any other components needing maintenance.
Geo-fabrics or plastics should not be used over the STA. No heavy equipment, machinery, or materials
should be placed on the backfilled STA. Livestock should not graze on the STA. Plumbing fixtures should be
checked to ensure that no additional water is being discharged to OWTS. For example, a running toilet or
leaky faucet can discharge hundreds of gallons of water a day and harm a STA.
If an effluent filter or screen has been installed in the OWTS, we recommend this filter or screen be cleaned
annually, or as needed. If the OWTS consists of a pressurized pump system, we recommend the laterals be
flushed annually, or as needed.
The homeowner should pump the septic tank every two years, or as needed gauged by measurement of
solids in the tank. Garbage disposal use should be minimized, and non-biodegradable materials should not
be placed into the OWTS. Grease should not be placed in household drains. Loading from a water softener
should not be discharged into the OWTS. No hazardous wastes should be directed into the OWTS.
Mechanical room drains should not discharge into the OWTS. The OWTS is engineered for domestic waste
only.
Page 6
ADDITIONAL CONSTRUCTION NOTES
If design includes a pump, weep holes must be installed to allow pump lines to drain to minimize risk of
freezing. The pump shall have an audible and visual alarm notification in the event of excessively high
water conditions and shall be connected to a control breaker separate from the high water alarm breaker
and from any other control system circuits. The pump system shall have a switch so the pump can be
manually operated.
Excavation equipment must not drive in excavation of the STA due to the potential to compact soil.
Extensions should be placed on all septic tank components to allow access to them from existing grade.
Backfill over the STA must be uniform and granular with no material greater than minus 3-inch.
INSTALLATION OBSERVATIONS
ALL SERVICE septic, LLC must view the OWTS during construction. The OWTS observation should be
performed before backfill, after placement of OWTS components. Septic tanks, distribution devices,
pumps, dosing siphons, and other plumbing, as applicable, must also be observed. ALL SERVICE septic,
LLC should be notified 48 hours in advance to observe the installation.
LIMITS:
The design is based on information submitted. If soil conditions encountered are different from conditions
described in report, ALL SERVICE septic, LLC should be notified. All OWTS construction must be
according to the county regulations. Requirements not specified in this report must follow applicable
county regulations. The contractor should have documented and demonstrated knowledge of the
requirements and regulations of the county in which they are working. Licensing of Systems Contractors
may be required by county regulation.
Please call with questions.
Sincerely,
ALL SERVICE septic, LLC Reviewed By:
Carla Ostberg, MPH, REHS
Pump Selection for a Pressurized System - Single Family Residence Project
Dykann Residence / 1645 Emma Spur
Parameters
Discharge Assembly Size
Transport Length Before Valve
Transport Pipe Class
Transport Line Size
Distributing Valve Model
Transport Length After Valve
Transport Pipe Class
Transport Pipe Size
Max Elevation Lift
Manifold Length
Manifold Pipe Class
Manifold Pipe Size
Number of Laterals per Cell
Lateral Length
Lateral Pipe Class
Lateral Pipe Size
Orifice Size
Orifice Spacing
Residual Head
Flow Meter
'Add-on' Friction Losses
1.25
85
40
1.50
6402
30
40
1.50
10
8
40
1.50
6
31
40
1.50
5/32
2
5
None
0
inches
feet
inches
feet
inches
feet
feet
inches
feet
inches
inches
feet
feet
inches
feet
Calculations
Minimum Flow Rate per Orifice
Number of Orifices per Zone
Total Flow Rate per Zone
Number of Laterals per Zone
% Flow Differential 1st/Last Orifice
Transport Velocity Before Valve
Transport Velocity After Valve
0.68
48
32.5
3
0.8
5.1
5.1
gpm
gpm
%
fps
fps
Frictional Head Losses
Loss through Discharge
Loss in Transport Before Valve
Loss through Valve
Loss in Transport after Valve
Loss in Manifold
Loss in Laterals
Loss through Flowmeter
'Add-on' Friction Losses
7.4
5.2
7.8
1.8
0.1
0.1
0.0
0.0
feet
feet
feet
feet
feet
feet
feet
feet
Pipe Volumes
Vol of Transport Line Before Valve
Vol of Transport Line After Valve
Vol of Manifold
Vol of Laterals per Zone
Total Vol Before Valve
Total Vol After Valve
8.9
3.2
0.8
9.8
8.9
13.9
gals
gals
gals
gals
gals
gals
Minimum Pump Requirements
Design Flow Rate
Total Dynamic Head
32.5
37.4
gpm
feet
0 5 10 15 20 25 30 35 40
0
50
100
150
200
250
300
Net Discharge (gpm)
PumpData
PF3005 High Head Effluent Pump
30 GPM, 1/2HP
115/230V 1Ø 60Hz, 200V 3Ø 60Hz
PF3007 High Head Effluent Pump
30 GPM, 3/4HP
230V 1Ø 60Hz, 200/460V 3Ø 60Hz
PF3010 High Head Effluent Pump
30 GPM, 1HP
230V 1Ø 60Hz, 200/460V 3Ø 60Hz
PF3015 High Head Effluent Pump
30 GPM, 1-1/2HP
230V 1Ø 60Hz, 200/230/460V 3Ø 60Hz
Legend
System Curve:
Pump Curve:
Pump Optimal Range:
Operating Point:
Design Point:
Orenco Systems® Inc. , 814 Airway Ave., Sutherlin, OR 97479 USA • 800-348-9843 • 541-459-4449 • www.orenco.com NTD-BPP-1
Rev. 1.2, © 08/14
Page 1 of 4
Biotube® ProPak Pump Package™
Technical Data SheetOrenco®
60-Hz Series Pump Packages General
Orenco’s Biotube® ProPak™ is a complete, integrated pump package for
filtering and pumping effluent from septic tanks. And its patented pump
vault technology eliminates the need for separate dosing tanks.
This document provides detailed information on the ProPak pump vault
and filter, 4-in. (100-mm) 60-Hz turbine effluent pump, and control panel.
For more information on other ProPak components, see the following
Orenco technical documents:
• Float Switch Assemblies (NSU-MF-MF-1)
• Discharge Assemblies (NTD-HV-HV-1)
• Splice Boxes (NTD-SB-SB-1)
• External Splice Box (NTD-SB-SB-1)
Applications
The Biotube ProPak is designed to filter and pump effluent to either
gravity or pressurized discharge points. It is intended for use in a septic
tank (one- or two-compartment) and can also be used in a pump tank.
The Biotube ProPak is designed to allow the effluent filter to be removed
for cleaning without the need to remove the pump vault or pump, simpli-
fying servicing.
Complete packages are available for on-demand or timed dosing sys-
tems with flow rates of 20, 30, and 50-gpm (1.3, 1.9, and 3.2 L/sec),
as well as with 50 Hz and 60 Hz power supplies.
Standard Models
BPP20DD, BPP20DD-SX, BPP30TDA, BPP30TDD-SX, BBPP50TDA,
BPP50TDD-SX
Product Code Diagram
Biotube® ProPak™ pump package components.
4-in. (100-mm)
turbine effluent pump
Pump motor
Pump
liquid end
Pump vault
Support pipe
Discharge
assembly
Float collar
Float stem
Floats
Float
bracket
Biotube® filter
cartridge
Vault inlet holes
External splice box
(Optional; internal splice
box comes standard.)
Riser lid
(not included)
Riser (not
included)
Control panel
BPP
Pump flow rate, nominal:
20 = 20 gpm (1.3 L/sec)
30 = 30 gpm (1.9 L/sec)
50 = 50 gpm (3.2 L/sec)
Control panel application:
DD = demand-dosing
TDA = timed-dosing, analog timer
TDD = timed dosing, digital timer, elapsed time
meter & counters
Standard options:
Blank = 57-in. (1448-mm) vault height, internal
splice box, standard discharge assembly
68 = 68-in. (1727-mm) vault height
SX = external splice box
CW = cold weather discharge assembly
DB = drainback discharge assembly
Q = cam lock
MFV = non-mercury float
-
Biotube® ProPak™ pump vault
Technical Data SheetOrenco®
Orenco Systems® Inc. , 814 Airway Ave., Sutherlin, OR 97479 USA • 800-348-9843 • 541-459-4449 • www.orenco.com NTD-BPP-1
Rev. 1.2, © 08/14
Page 2 of 4
ProPak™ Pump Vault
Materials of Construction
Vault body Polyethylene
Support pipes PVC
Dimensions, in. (mm)
A - Overall vault height 57 (1448) or 68 (1727)
B - Vault diameter 17.3 (439)
C - Inlet hole height 19 (475)
D - Inlet hole diameter (eight holes total) 2 (50)
E - Vault top to support pipe bracket base 3 (76)
F - Vault bottom to filter cartridge base 4 (102)
ProPak™ pump vault (shown with Biotube filter and effluent pump)
Biotube® Filter Cartridge
Materials of Construction
Filter tubes Polyethylene
Cartridge end plates Polyurethane
Handle assembly PVC
Dimensions, in. (mm)
A - Cartridge height 18 (457)
B - Cartridge width 12 (305)
Performance
Biotube® mesh opening 0.125 in. (3 mm)*
Total filter flow area 4.4 ft2 (0.4 m2)
Total filter surface area 14.5 ft2 (1.35 m2)
Maximum flow rate 140 gpm (8.8 L/sec)
*0.062-in. (1.6-mm) filter mesh available
Biotube® filter cartridge (shown with float switch assembly)
AA
D
E
B B
C
E
Technical Data Sheet Orenco®
Orenco Systems® Inc. , 814 Airway Ave., Sutherlin, OR 97479 USA • 800-348-9843 • 541-459-4449 • www.orenco.com NTD-BPP-1
Rev. 1.2, © 08/14
Page 3 of 4
Pump Curves
Pump curves, such as those shown here, can help you determine
the best pump for your system. Pump curves show the relationship
between flow (gpm or L/sec) and pressure (TDH), providing a graphical
representation of a pump’s performance range. Pumps perform best
at their nominal flow rate, measured in gpm or L/sec.
4-in. (100-mm) Turbine Effluent Pumps
Orenco’s 4-in. (100 mm) Turbine Effluent Pumps are constructed of
lightweight, corrosion-resistant stainless steel and engineered plastics;
all are field-serviceable and repairable with common tools. All 60-Hz
PF Series models are CSA certified to the U.S. and Canadian safety
standards for effluent pumps, and meet UL requirements.
Power cords for Orenco’s 4-in. (100-mm) turbine effluent pumps are
Type SOOW 600-V motor cable (suitable for Class 1, Division 1 and 2
applications).
Materials of Construction
Discharge: Stainless steel or glass-filled polypropylene
Discharge bearing: Engineered thermoplastic (PEEK)
Diffusers: Glass-filled PPO
Impellers: Acetal (20-, 30-gmp), Noryl (50-gpm)
Intake screens: Polypropylene
Suction connection: Stainless steel
Drive shaft: 300 series stainless steel
Coupling: Sintered 300 series stainless steel
Shell: 300 series stainless steel
Lubricant: Deionized water and propylene glycol
Specifications
Nom. flow, Length Weight Discharge Impellers
gpm (L/sec) in. (mm) lb (kg) in., nominal 1
20 (1.3) 22.5 (572) 26 (11) 1.25 4
30 (1.9) 21.3 (541) 25 (11) 1.25 3
50 (3.2) 20.3 (516) 27 (12) 2.00 2
Performance
Nom. flow, hp (kW) Design Rated Min liquid
gpm (L/sec) flow amps cycles/day level, in. (mm) 2
20 (1.3) 0.5 (0.37) 12.3 300 18 (457)
30 (1.9) 0.5 (0.37) 11.8 300 20 (508)
50 (3.2) 0.5 (0.37) 12.1 300 24 (610)
1 Discharge is female NPT threaded, U.S. nominal size, to accommodate Orenco® discharge
hose and valve assemblies. Consult your Orenco Distributor about fittings to connect discharge
assemblies to metric-sized piping.
2 Minimum liquid level is for single pumps when installed in an Orenco Biotube® ProPak™ Pump
Vault.
10 20 30 40 6050 70
0.63 1.26 1.89 2.52 3.793.15 4.42
140
120
100
80
60
40
20
Flow in gallons per minute (gpm)
Flow in liters per second (L/sec)Total dynamic head (TDH) in feetTotal dynamic head (TDH) in metersPF 500511
43
37
30
24
18
12
6
PF 200511
PF 300511
Technical Data SheetOrenco®
Orenco Systems® Inc. , 814 Airway Ave., Sutherlin, OR 97479 USA • 800-348-9843 • 541-459-4449 • www.orenco.com NTD-BPP-1
Rev. 1.2, © 08/14
Page 4 of 4
AUTO
OFF
MAN
NN1
Control Panel (Demand Dose)
Orenco’s ProPak™ demand dose control panels are specifically engineered
for the ProPak pump package and are ideal for applications such as
demand dosing from a septic tank into a conventional gravity drainfield.
Materials of Construction
Enclosure UV-resistant fiberglass, UL Type 4X
Hinges Stainless steel
Dimensions, in. (mm)
A - Height 11.5 (290)
B - Width 9.5 (240)
C - Depth 5.4 (135)
Specifications
Panel ratings 120 V, 3/4 hp (0.56 kW), 14 A, single phase, 60 Hz
1. Motor-start contactor 16 FLA, 1 hp (0.75 kW), 60 Hz; 2.5 million cycles
at FLA (10 million at 50% of FLA)
2. Circuit 120 V, 10 A, OFF/ON switch, Single pole breakers
3. Toggle switch Single-pole, double-throw HOA switch, 20 A
4. Audio alarm 95 dB at 24 in. (600 mm), warble-tone sound, UL
Type 4X
5. Audio alarm 120 V, automatic reset, DIN rail mount silence
relay
6. Visual alarm 7/8-in. (22-mm) diameter red lens, “Push-to-silence,”
120 V LED, UL Type 4X
Control Panel (Timed Dose)
Orenco’s ProPak timed dose control panels are specifically engineered for
the ProPak pump package and are ideal for applications such as timed
dosing from a septic tank into a pressurized drainfield or mound. Analog or
digital timers are available.
Materials of Construction
Enclosure UV-resistant fiberglass, UL Type 4X
Hinges Stainless steel
Dimensions, in. (mm)
A - Height 11.5 (290)
B - Width 9.5 (240)
C - Depth 5.4 (135)
Specifications
Panel ratings 120 V, 3/4 hp (0.56 kW), 14 A, single phase, 60 Hz
Dual-mode Programmable for timed- or demand-dosing
(digital timed-dosing panels only)
1a. Analog timer 120 V, repeat cycle from 0.05 seconds to 30
(not shown) hours. Separate variable controls for OFF and
ON time periods
1b. Digital timer 120-V programmable logic unit with built-in LCD
(shown below) screen and programming keys. Provides control
functions and timing for panel operation
2. Motor-start contactor 16 FLA, 1 hp (0.75 kW), 60 Hz; 2.5 million cycles
at FLA (10 million at 50% of FLA)
3. Circuit breakers 120 V, 10 A, OFF/ON switch. Single pole 120 V
4. Toggle Switch Single-pole, double-throw HOA switch, 20 A
5. Audio alarm 95 dB at 24 in. (600 mm), warble-tone sound, UL
Type 4X
6. Visual alarm 7/8-in. (22-mm) diameter red lens, “Push-to-silence”,
120 V LED, UL Type 4X
Control panel, demand-dose Control panel, timed-dose (digital timer model shown)
1b
2
3
4
56
1
2
3
4
5
6
Orenco Systems® Inc. , 814 Airway Ave., Sutherlin, OR 97479 USA • 800-348-9843 • 541-459-4449 • www.orenco.com NTD-PU-PF-1
Rev. 2.2, © 09/14
Page 1 of 6
PF Series 4-inch (100-mm) Submersible Effluent Pumps
Technical Data SheetOrenco®
Applications
Our 4-inch (100-mm) Submersible Effluent Pumps are designed to
transport screened effluent (with low TSS counts) from septic tanks or
separate dosing tanks. All our pumps are constructed of lightweight,
corrosion-resistant stainless steel and engineered plastics; all are field-
serviceable and repairable with common tools; and all 60-Hz PF Series
models are CSA certified to the U.S. and Canadian safety standards for
effluent pumps, meeting UL requirements.
Orenco’s Effluent Pumps are used in a variety of applications, including
pressurized drainfields, packed bed filters, mounds, aerobic units, effluent
irrigation, effluent sewers, wetlands, lagoons, and more. These pumps
are designed to be used with a Biotube® pump vault or after a secondary
treatment system.
Features/Specifications
To specify this pump for your installation, require the following:
• Minimum 24-hour run-dry capability with no deterioration in pump life
or performance*
• Patented 1⁄8-inch (3-mm) bypass orifice to ensure flow recirculation
for motor cooling and to prevent air bind
• Liquid end repair kits available for better long-term cost of ownership
• TRI-SEAL™ floating impeller design on 10, 15, 20, and 30 gpm
(0.6, 1.0, 1.3, and 1.9 L/sec) models; floating stack design on 50 and
75 gpm (3.2 and 4.7 L/sec) models
• Franklin Electric Super Stainless motor, rated for continuous use and
frequent cycling
• Type SOOW 600-V motor cable
• Five-year warranty on pump or retrofit liquid end from date of manu-
facture against defects in materials or workmanship
* Not applicable for 5-hp (3.73 kW) models
Standard Models
See specifications chart, pages 2-3, for a list of standard pumps. For
a complete list of available pumps, call Orenco.
Product Code Diagram
PF -
Nominal flow, gpm (L/sec):
10 = 10 (0.6) 15 = 15 (1.0)
20 = 20 (1.3) 30 = 30 (1.9)
50 = 50 (3.2) 75 = 75 (4.7)
Pump, PF Series
Frequency:
1 = single-phase 60 Hz
3 = three-phase 60 Hz
5 = single-phase 50 Hz
Voltage, nameplate:
1 = 115* 200 = 200
2 = 230† 4 = 460
Horsepower (kW):
03 = 1⁄3 hp (0.25) 05 = ½ hp (0.37)
07 = ¾ hp (0.56) 10 = 1 hp (0.75)
15 = 1-½ hp (1.11) 20 = 2 hp (1.50)
30 = 3 hp (2.24) 50 = 5 hp (3.73)
Cord length, ft (m):‡
Blank = 10 (3) 20 = 20 (6)
30 = 30 (9) 50 = 50 (15)
* ½-hp (0.37kW) only
†220 volts for 50 Hz pumps
‡Note: 20-foot cords are available only for single-phase pumps through 1-½ hp
Franklin
Super Stainless
Motor
Franklin
Liquid End
Discharge Connection
Bypass Orifice
Suction Connection
LR80980
LR2053896
Powered by
Technical Data SheetOrenco®
Orenco Systems® Inc. , 814 Airway Ave., Sutherlin, OR 97479 USA • 800-348-9843 • 541-459-4449 • www.orenco.com NTD-PU-PF-1
Rev. 2.2, © 09/14
Page 2 of 6
Specifications, 60 Hz
Pump Model
PF100511 10 (0.6) 0.50 (0.37) 1 115 120 12.7 12.7 6 1 ¼ in. GFP 23.0 (660) 16 (406) 26 (12) 300
PF100512 10 (0.6) 0.50 (0.37) 1 230 240 6.3 6.3 6 1 ¼ in. GFP 23.0 (660) 16 (406) 26 (12) 300
PF10053200 10 (0.6) 0.50 (0.37) 3 200 208 3.8 3.8 6 1 ¼ in. GFP 23.0 (660) 16 (406) 26 (12) 300
PF100712 4, 5 10 (0.6) 0.75 (0.56) 1 230 240 8.3 8.3 8 1 ¼ in. GFP 25.9 (658) 17 (432) 30 (14) 300
PF10073200 4, 5 10 (0.6) 0.75 (0.56) 3 200 208 5.1 5.2 8 1 ¼ in. GFP 25.4 (645) 17 (432) 31 (14) 300
PF101012 5, 6 10 (0.6) 1.00 (0.75) 1 230 240 9.6 9.6 9 1 ¼ in. GFP 27.9 (709) 18 (457) 33 (15) 100
PF10103200 5, 6 10 (0.6) 1.00 (0.75) 3 200 208 5.5 5.5 9 1 ¼ in. GFP 27.3 (693) 18 (457) 37 (17) 300
PF102012 5, 6, 7, 8 10 (0.6) 2.00 (1.49) 1 230 240 12.1 12.1 18 1 ¼ in. SS 39.5 (1003) 22 (559) 48 (22) 100
PF102032 5, 6, 8 10 (0.6) 2.00 (1.49) 3 230 240 7.5 7.6 18 1 ¼ in. SS 37.9 (963) 20 (508) 44 (20) 300
PF10203200 5, 6, 8 10 (0.6) 2.00 (1.49) 3 200 208 8.7 8.7 18 1 ¼ in. SS 37.9 (963) 20 (508) 44 (20) 300
PF150311 15 (1.0) 0.33 (0.25) 1 115 120 8.7 8.8 3 1 ¼ in. GFP 19.5 (495) 15 (380) 23 (10) 300
PF150312 15 (1.0) 0.33 (0.25) 1 230 240 4.4 4.5 3 1 ¼ in. GFP 19.5 (495) 15 (380) 23 (10) 300
PF200511 20 (1.3) 0.50 (0.37) 1 115 120 12.3 12.5 4 1 ¼ in. GFP 22.3 (566) 18 (457) 25 (11) 300
PF200512 20 (1.3) 0.50 (0.37) 1 230 240 6.4 6.5 4 1 ¼ in. GFP 22.5 (572) 18 (457) 26 (12) 300
PF20053200 20 (1.3) 0.50 (0.37) 3 200 208 3.7 3.8 4 1 ¼ in. GFP 22.3 (566) 18 (457) 26 (12) 300
PF201012 4, 5 20 (1.3) 1.00 (0.75) 1 230 240 10.5 10.5 7 1 ¼ in. GFP 28.4 (721) 20 (508) 33 (15) 100
PF20103200 4, 5 20 (1.3) 1.00 (0.75) 3 200 208 5.8 5.9 7 1 ¼ in. GFP 27.8 (706) 20 (508) 33 (15) 300
PF201512 4, 5 20 (1.3) 1.50 (1.11) 1 230 240 12.4 12.6 9 1 ¼ in. GFP 34.0 (864) 24 (610) 41 (19) 100
PF20153200 4, 5 20 (1.3) 1.50 (1.11) 3 200 208 7.1 7.2 9 1 ¼ in. GFP 30.7 (780) 20 (508) 35 (16) 300
PF300511 30 (1.9) 0.50 (0.37) 1 115 120 11.8 11.8 3 1 ¼ in. GFP 21.3 (541) 20 (508) 28 (13) 300
PF300512 30 (1.9) 0.50 (0.37) 1 230 240 6.2 6.2 3 1 ¼ in. GFP 21.3 (541) 20 (508) 25 (11) 300
PF30053200 30 (1.9) 0.50 (0.37) 3 200 208 3.6 3.6 3 1 ¼ in. GFP 21.3 (541) 20 (508) 25 (11) 300
PF300712 30 (1.9) 0.75 (0.56) 1 230 240 8.5 8.5 5 1 ¼ in. GFP 24.8 (630) 21 (533) 29 (13) 300
PF30073200 30 (1.9) 0.75 (0.56) 3 200 208 4.9 4.9 5 1 ¼ in. GFP 24.6 (625) 21 (533) 30 (14) 300
PF301012 4 30 (1.9) 1.00 (0.75) 1 230 240 10.4 10.4 6 1 ¼ in. GFP 27.0 (686) 22 (559) 32 (15) 100
PF30103200 4 30 (1.9) 1.00 (0.75) 3 200 208 5.8 5.8 6 1 ¼ in. GFP 26.4 (671) 22 (559) 33 (15) 300
PF301512 4, 5 30 (1.9) 1.50 (1.11) 1 230 240 12.6 12.6 8 1 ¼ in. GFP 32.8 (833) 24 (610) 40 (18) 100
PF30153200 4, 5 30 (1.9) 1.50 (1.11) 3 200 208 6.9 6.9 8 1 ¼ in. GFP 29.8 (757) 22 (559) 34 (15) 300
PF301534 4, 5 30 (1.9) 1.50 (1.11) 3 460 480 2.8 2.8 8 1 ¼ in. GFP 29.5 (685) 22 (559) 34 (15) 300
PF302012 5, 6, 7 30 (1.9) 2.00 (1.49) 1 230 240 11.0 11.0 10 1 ¼ in. SS 35.5 (902) 26 (660) 44 (20) 100
PF30203200 5, 6 30 (1.9) 2.00 (1.49) 3 200 208 9.3 9.3 10 1 ¼ in. SS 34.0 (864) 24 (610) 41 (19) 300
PF303012 5, 6, 7, 8 30 (1.9) 3.00 (2.23) 1 230 240 16.8 16.8 14 1 ¼ in. SS 44.5 (1130) 33 (838) 54 (24) 100
PF303032 5, 6, 8 30 (1.9) 3.00 (2.23) 3 230 240 10.0 10.1 14 1 ¼ in. SS 44.3 (1125) 27 (686) 52 (24) 300
PF305012 5, 6, 7, 8 30 (1.9) 5.00 (3.73) 1 230 240 25.6 25.8 23 1 ¼ in. SS 66.5 (1689) 53 (1346) 82 (37) 100
PF305032 5, 6, 8 30 (1.9) 5.00 (3.73) 3 230 240 16.6 16.6 23 1 ¼ in. SS 60.8 (1544) 48 (1219) 66 (30) 300
PF30503200 5, 6, 8 30 (1.9) 5.00 (3.73) 3 200 208 18.7 18.7 23 1 ¼ in. SS 60.8 (1544) 48 (1219) 66 (30) 300
PF500511 50 (3.2) 0.50 (0.37) 1 115 120 12.1 12.1 2 2 in. SS 20.3 (516) 24 (610) 27 (12) 300
PF500512 50 (3.2) 0.50 (0.37) 1 230 240 6.2 6.2 2 2 in. SS 20.3 (516) 24 (610) 27 (12) 300
PF500532 50 (3.2) 0.50 (0.37) 3 230 240 3.0 3.0 2 2 in. SS 20.3 (516) 24 (610) 28 (13) 300
PF50053200 50 (3.2) 0.50 (0.37) 3 200 208 3.7 3.7 2 2 in. SS 20.3 (516) 24 (610) 28 (13) 300
PF500534 50 (3.2) 0.50 (0.37) 3 460 480 1.5 1.5 2 2 in. SS 20.3 (516) 24 (610) 28 (13) 300
PF500712 50 (3.2) 0.75 (0.56) 1 230 240 8.5 8.5 3 2 in. SS 23.7 (602) 25 (635) 31 (14) 300
PF500732 50 (3.2) 0.75 (0.56) 3 230 240 3.9 3.9 3 2 in. SS 23.7 (602) 25 (635) 32 (15) 300
PF50073200 50 (3.2) 0.75 (0.56) 3 200 208 4.9 4.9 3 2 in. SS 23.1 (587) 26 (660) 32 (15) 300Design gpm (L/sec)Horsepower (kW)PhaseNameplate voltageActual voltageDesign flow ampsMax ampsImpellersDischarge size and material 1Length, in. (mm)Min. liquid level, 2 in. (mm)Weight, 3 lb (kg)Rated cycles/day
Technical Data Sheet Orenco®
Orenco Systems® Inc. , 814 Airway Ave., Sutherlin, OR 97479 USA • 800-348-9843 • 541-459-4449 • www.orenco.com NTD-PU-PF-1
Rev. 2.2, © 09/14
Page 3 of 6
Specifications, 60 Hz (continued)
Pump Model
PF500734 50 (3.2) 0.75 (0.56) 3 460 480 1.8 1.8 3 2 in. SS 34.8 (884) 25 (635) 31 (14) 300
PF501012 50 (3.2) 1.00 (0.75) 1 230 240 10.1 10.1 4 2 in. SS 27.0 (686) 26 (660) 35 (16) 100
PF50103200 50 (3.2) 1.00 (0.75) 3 200 208 5.7 5.7 4 2 in. SS 26.4 (671) 26 (660) 39 (18) 300
PF501034 50 (3.2) 1.00 (0.75) 3 460 480 2.2 2.2 4 2 in. SS 26.4 (671) 26 (660) 39 (18) 300
PF5015124 50 (3.2) 1.50 (1.11) 1 230 240 12.5 12.6 5 2 in. SS 32.5 (826) 30 (762) 41 (19) 100
PF501532004 50 (3.2) 1.50 (1.11) 3 200 208 7.0 7.0 5 2 in. SS 29.3 (744) 26 (660) 35 (16) 300
PF503012 4, 5, 7, 8 50 (3.2) 3.00 (2.23) 1 230 240 17.7 17.7 8 2 in. SS 43.0 (1092) 37 (940) 55 (25) 100
PF50303200 4, 5, 8 50 (3.2) 3.00 (2.23) 3 200 208 13.1 13.1 8 2 in. SS 43.4 (1102) 30 (762) 55 (25) 300
PF503034 4, 5, 8 50 (3.2) 3.00 (2.23) 3 460 480 5.3 5.3 8 2 in. SS 40.0 (1016) 31 (787) 55 (25) 300
PF505012 5,6,7,8 50 (3.2) 5.00 (3.73) 1 230 240 26.2 26.4 13 2 in. SS 65.4 (1661) 55 (1397) 64 (29) 300
PF505032 5,6,7,8 50 (3.2) 5.00 (3.73) 3 230 240 16.5 16.5 13 2 in. SS 59.3 (1506) 49 (1245) 64 (29) 300
PF751012 75 (4.7) 1.00 (0.75) 1 230 240 9.9 10.0 3 2 in. SS 27.0 (686) 27 (686) 34 (15) 100
PF751512 75 (4.7) 1.50 (1.11) 1 230 240 12.1 12.3 4 2 in. SS 33.4 (848) 30 (762) 44 (20) 100
Specifications, 50 Hz
Pump Model
PF100552 10 (0.6) 0.50 (0.37) 1 220 230 3.9 4.1 6 1 ¼ in. GFP 23.0 (584) 17 (432) 26 (12) 300
PF100752 4, 5 10 (0.6) 0.75 (0.56) 1 220 230 6.2 6.2 9 1 ¼ in. GFP 26.8 (658) 17 (432) 30 (14) 300
PF101552 5, 6 10 (0.6) 1.50 (1.11) 1 220 230 10.5 11.4 18 1 ¼ in. SS 39.5 (1003) 22 (559) 46 (21) 300
PF300552 30 (1.9) 0.50 (0.37) 1 220 230 4.1 4.1 4 1 ¼ in. GFP 22.5 (572) 19 (483) 26 (12) 300
PF300752 30 (1.9) 0.75 (0.56) 1 220 230 6.1 6.1 5 1 ¼ in. GFP 24.8 (630) 19 (483) 29 (13) 300
PF301052 30 (1.9) 1.00 (0.75) 1 220 230 7.4 7.4 7 1 ¼ in. GFP 28.4 (721) 20 (508) 32 (15) 100
PF301552 4, 5 30 (1.9) 1.50 (1.11) 1 220 230 9.3 9.3 8 1 ¼ in. GFP 35.4 (899) 24 (610) 40 (18) 100
PF500552 50 (3.2) 0.50 (0.37) 1 220 230 4.0 4.0 2 2 in. SS 20.3 (516) 25 (635) 29 (13) 300
PF500752 50 (3.2) 0.75 (0.56) 1 220 230 6.3 6.4 3 2 in. SS 23.7 (602) 25 (635) 31 (14) 300
PF501052 50 (3.2) 1.00 (0.75) 1 220 230 7.3 7.4 4 2 in. SS 27.0 (686) 26 (660) 35 (16) 100
PF501552 50 (3.2) 1.50 (1.11) 1 220 230 9.1 9.1 5 2 in. SS 32.5 (826) 30 (762) 42 (19) 100
PF751052 75 (3.2) 1.00 (0.75) 1 220 230 7.3 7.3 4 2 in. SS 30.0 (762) 27 (686) 34 (15) 100
1 GFP = glass-filled polypropylene; SS = stainless steel. The 1 ¼-in. NPT GFP discharge is 2 7⁄8 in. octagonal across flats; the 1 ¼-in. NPT SS discharge is 2 1⁄8 in. octagonal across flats; and the
2-in. NPT SS discharge is 2 7⁄8 in. hexagonal across flats. Discharge is female NPT threaded, U.S. nominal size, to accommodate Orenco® discharge hose and valve assemblies. Consult your Orenco
Distributor about fittings to connect hose and valve assemblies to metric-sized piping.
2 Minimum liquid level is for single pumps when installed in an Orenco Biotube® Pump Vault or Universal Flow Inducer. In other applications, minimum liquid level should be top of pump. Consult
Orenco for more information.
3 Weight includes carton and 10-ft (3-m) cord.
4 High-pressure discharge assembly required.
5 Do not use cam-lock option (Q) on discharge assembly.
6 Custom discharge assembly required for these pumps. Contact Orenco.
7 Capacitor pack (sold separately or installed in a custom control panel) required for this pump. Contact Orenco.
8 Torque locks are available for all pumps, and are supplied with 3-hp and 5-hp pumps. Design gpm (L/sec)Horsepower (kW)PhaseNameplate voltageActual voltageDesign flow ampsMax ampsImpellersDischarge size and material 1Length, in. (mm)Min. liquid level, 2 in. (mm)Weight, 3 lb (kg)Rated cycles/day
Technical Data SheetOrenco®
Orenco Systems® Inc. , 814 Airway Ave., Sutherlin, OR 97479 USA • 800-348-9843 • 541-459-4449 • www.orenco.com NTD-PU-PF-1
Rev. 2.2, © 09/14
Page 4 of 6
Materials of Construction
Discharge Glass-filled polypropylene or stainless steel
Discharge bearing Engineered thermoplastic (PEEK)
Diffusers Glass-filled PPO (Noryl GFN3)
Impellers Celcon® acetal copolymer on 10-, 20, and 30-gpm models; 50-gpm impellers are Noryl GFN3
Intake screen Polypropylene
Suction connection Stainless steel
Drive shaft 7/16 inch hexagonal stainless steel, 300 series
Coupling Sintered stainless steel, 300 series
Shell Stainless steel, 300 series
Motor Franklin motor exterior constructed of stainless steel. Motor filled with deionized water and propylene glycol for constant lubrication. Hermetically
sealed motor housing ensures moisture-free windings. All thrust absorbed by Kingsbury-type thrust bearing. Rated for continuous duty. Single-
phase motors and 200 and 230 V 3-phase motors equipped with surge arrestors for added security. Single-phase motors through 1.5 hp
(1.11 kW) have built-in thermal overload protection, which trips at 203-221˚ F (95-105˚ C).
Using a Pump Curve
A pump curve helps you determine the best pump for your system. Pump curves show the relationship between flow (gpm or L/sec) and pressure
(total dynamic head, or TDH), providing a graphical representation of a pump’s optimal performance range. Pumps perform best at their nominal
flow rate — the value, measured in gpm, expressed by the first two numerals in an Orenco pump nomenclature. The graphs in this section show
optimal pump operation ranges with a solid line. Flow flow rates outside of these ranges are shown with a dashed line. For the most accurate
pump specification, use Orenco’s PumpSelect™ software.
Pump Curves, 60 Hz Models
Total dynamic head (TDH) in feetFlow in gallons per minute (gpm)
24 81012141660
800
700
600
500
400
300
200
100 PF1005-FC
w/ ¼" flow
controller
PF10 Series, 60 Hz, 0.5 - 2.0 hp
PF1007
PF1010
PF1020
PF1005
Total dynamic head (TDH) in feetFlow in gallons per minute (gpm)
36 12 15 18 21 2490
160
140
120
100
80
60
40
20
0
PF1503
PF15 Series, 60 Hz, 0.3 hp
Technical Data Sheet Orenco®
Orenco Systems® Inc. , 814 Airway Ave., Sutherlin, OR 97479 USA • 800-348-9843 • 541-459-4449 • www.orenco.com NTD-PU-PF-1
Rev. 2.2, © 09/14
Page 5 of 6Total dynamic head (TDH) in feetFlow in gallons per minute (gpm)
5102025303540150
400
350
300
250
200
150
100
50
0
PF2005
PF2010
PF2015
PF20 Series, 60 Hz, 0.5 - 1.5 hp
Total dynamic head (TDH) in feetFlow in gallons per minute (gpm)
510202530354045150
800
900
700
600
500
400
300
200
100
0
PF3005
PF3007
PF3010
PF3015
PF3020
PF3030
PF3050 PF30 Series, 60 Hz, 0.5 - 5.0 hp
Total dynamic head (TDH) in feetFlow in gallons per minute (gpm)
450
400
350
300
250
200
150
100
50
0 10 02040506070809030
PF5050
PF5030
PF5015
PF5010
PF5007
PF5005
PF50 Series, 60 Hz, 0.5 - 5.0 hp
Total dynamic head (TDH) in feetFlow in gallons per minute (gpm)
10 20 40 50 60 70 80 90 100300
80
90
100
70
60
50
40
30
20
10
0
PF75 Series, 60 Hz, 1.0 - 1.5 hpPF7515
PF7510
60 Hz Models (continued)
Technical Data SheetOrenco®
Orenco Systems® Inc. , 814 Airway Ave., Sutherlin, OR 97479 USA • 800-348-9843 • 541-459-4449 • www.orenco.com NTD-PU-PF-1
Rev. 2.2, © 09/14
Page 6 of 6Total dynamic head (TDH) in metersTotal dynamic head (TDH) in feet, nominalFlow in liters per second (L/sec)
Flow in gallons per minute (gpm), nominal
0.90.80.70.60.50.40.30.20.10
13119.57.96.34.83.21.6
120
100
80
60
40
20
0
160
180
140
394
328
262
197
131
66
525
459
PF100552
PF100752
PF101552
PF1005-FC
w/ 6mm flow
controller
PF10 Series, 50 Hz, 0.37 - 1.11 kW
Total dynamic head (TDH) in metersTotal dynamic head (TDH) in feet, nominalFlow in liters per second (L/sec)
Flow in gallons per minute (gpm), nominal
0.8 1.2 1.6 2.0 2.40.40
13 19 25 326.3
60
80
100
120
40
20
0
197
262
328
131
66
PF301552
PF301052
PF300752
PF300552
PF30 Series, 50 Hz, 0.37 - 1.11 kW
Total dynamic head (TDH) in metersTotal dynamic head (TDH) in feet, nominalFlow in liters per second (L/sec)
Flow in gallons per minute (gpm), nominal
0.5 1.0 2.0 2.5 3.0 3.5 4.0 4.51.50
7.9 16 32 40 48 56 6324
40
45
35
30
25
20
15
10
5
0
131
115
98
82
66
49
33
16
PF501552
PF501052
PF500752
PF500552
PF50 Series, 50 Hz, 0.37 - 1.11 kW
Total dynamic head (TDH) in metersTotal dynamic head (TDH) in feet, nominalFlow in liters per second (L/sec)
Flow in gallons per minute (gpm), nominal
0.6 1.2 2.4 3.0 3.6 4.2 5.44.8 6.01.80
10 19 4838 57 67 76 8629
27
30
24
21
18
15
12
9
6
3
0
89
79
69
59
49
39
30
20
PF751052
PF75 Series, 50 Hz, 0.75 kW
Pump Curves, 50 Hz Models
Introduction
Orenco’s automatic distributing valve assemblies, pressurized with small high-head effluent
pumps, are useful for distributing effluent to multiple zones. These zones can be segments
of sand filter manifolds, drainfields, or other effluent distribution systems. Distributing
valve assemblies can substantially simplify the design and installation of a distribution sys-
tem and reduce installation costs. This is particularly true where a distributing valve assem-
bly is used instead of multiple pumps and/or electrically operated valves. Additionally, a
reduction in long term operation and maintenance costs is realized due to a reduced size
and/or number of pumps. More even distribution can be achieved on sloping sites by zoning
laterals at equal elevations. This eliminates drainback to lower lines and the unequal distrib-
ution of effluent that occurs at the beginning of a cycle.
Valve Operation
The valve itself has only a few moving parts, requires no electricity, and alternates automati-
cally each cycle. Refer to Figure 1 for the following valve operation description. The flow
of the incoming effluent forces the rubber flap disk 1 to seat against the valve bottom 2.
The opening 3 in the rubber flap disk aligns with an opening in the valve bottom to allow
flow to only one valve outlet. The stem 4 houses a stainless steel spring which pushes the
rubber flap disk away from the valve bottom after the flow of effluent stops. The stem acts
as a cam follower and rotates the rubber flap disk as the stem is raised and lowered through
the cam 5. The force from the flow of effluent pushes the stem down through the cam and
the stainless steel spring pushes the stem back up through the cam when the flow of effluent
stops. Each linear motion of the stem allows the rubber flap disk to rotate half the distance
necessary to reach the next outlet. When there is no flow, the rubber flap disk is in the “up”
position and is not seated against the valve bottom.
5
4
3
2
1
Inlet
Outlets
Figure 1:
6000 Series Valve
Orenco Automatic Distributing
Valve Assemblies
NTP-VA-1
Rev. 1.2, © 11/03
Orenco Systems®, Inc.
Page 1 of 6
For Wastewater Effluent Systems
This article may describe design criteria that was in effect at the time the article was written. FOR CURRENT DESIGN
CRITERIA, call Orenco Systems, Inc. at 1-800-348-9843.
The Distributing Valve Assembly
The Orenco Automatic Distributing Valve Assembly combines the distributing valve itself and sever-
al other components to give a complete preassembled unit that is easy to install, monitor, and main-
tain. Figure 2 shows a complete assembly. Because distributing valves with several outlets can be
difficult to line up and glue together in the field, the discharge lines in the assemblies are glued in
place at Orenco. The unions (1) allow removal and maintenance of the valve. The clear PVC pipe
sections (2) give a visual check of which discharge line is being pressurized. The inlet ball valve (3)
allows a quick, simple method to test for proper valve cycling. The ball valve also stops the flow of
effluent in case the pump is activated unexpectedly during maintenance or inspection. Check valves
may be necessary on the discharge lines. Use of check valves is discussed in the valve positioning
section.
Valve Assembly Hydraulics
Liquid flowing through the valve assembly must pass through fairly small openings and make several
changes in direction. Because of this, headlosses through the valve assembly are fairly high. Table 1
gives the headloss equations for several different assemblies and Figure 3 shows the graphical repre-
sentations of these equations. Orenco recommends that high-head turbine pumps be used to pressur-
ize the valve assemblies to ensure enough head is available for proper system operation. High-head
turbine pumps are also recommended because the use of a distributing valve usually requires more
frequent pump cycling. The high-head turbine pumps are designed for high cycling systems and will
outlast conventional effluent pumps by a factor of 10 or more in a high cycling mode. Furthermore,
the high-head turbine pump intake is 12 inches or more above the bottom of the pump and tends to
prevent any settled solids from being pumped into the distribution valve and obstructing its opera-
tion. A minimum flow rate through the distributing valve is required to ensure proper seating of the
rubber flap disk. Minimum flow rates for the various models are given in Table 1.
Figure 2:
Orenco Distributing Valve Assembly (6000 Series Valve)
NTP-VA-1
Rev. 1.2, © 11/03
Orenco Systems®, Inc.
Page 2 of 6
Table 1. Automatic Distributing Valve Assembly Headloss Equations
Model Series Equation Operating Range (gpm)
V4400A HL = 0.085 x Q1.45 10 - 40
V4600A HL = 0.085 x Q1.58 10 - 25
V6400A HL = 0.0045 x Q2 + 3.5 x (1 - e-0.06Q) 15 - 70
V6600A HL = 0.0049 x Q2 + 5.5 x (1 - e-0.1Q) 15 - 70
NTP-VA-1
Rev. 1.2, © 11/03
Orenco Systems®, Inc.
Page 3 of 6
0
5
10
15
20
25
30
35
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
Flow (gpm)Head Loss Through Assembly (ft.)V4600A
V4400A
V6600A
V6400A
The Pumping System
Although the distributing valve was designed for the irrigation industry, it has started to gain fairly
wide acceptance in the effluent pumping industry. However, because of the mechanical movements
of the valve, it is necessary to take steps to prevent solids from reaching the distributing valve that
may impede the operation of the valve. Orenco Biotube®Pump Vaults — when properly sized and
installed — provide the necessary protection to prevent valve malfunction. The Biotube®pump vault
accepts effluent only from the clear zone between a tank’s scum and sludge layers and then filters
this effluent through a very large surface area screen cartridge. Without this protection in effluent
systems, the valve has very little chance of reliable long-term operation.
Figure 3:
Automatic distributing valve assembly headloss curves
Valve Positioning
The physical position of the valve in relation to the pump and the discharge point is very important
for proper valve operation. The most reliable operation occurs when the valve is placed at the high
point in the system and as close to the pump as possible. The transport line between the pump and
valve should be kept full if possible. If the line is empty at the beginning of each cycle, pockets of
air during filling can cause random rotation of the valve. The valve is particularly vulnerable to this
erratic rotation with empty lines that are long and not laid at a constant grade. An ideal valve loca-
tion is shown in Figure 4.
If the final discharge point is more than about 2 feet above the valve and the system does not drain
back into the dosing tank, check valves should be installed on the lines immediately following the
valve and a pressure release hole or line should be installed just prior to the valve. This pressure
release hole or line can go into a return line to the dosing tank or to a “minidrainfield” near the valve.
In order for the valve to rotate reliably, no more than about 2 feet of head should remain against the
valve to allow the rubber flap disk to return to its up position. In many cases, it may take from one
minute to several minutes for the pressure in the valve to be lowered enough for proper rotation to
occur. Special care should be taken when installing systems controlled by programmable timers to
ensure cycling does not occur too rapidly. Figure 5 illustrates a valve assembly using check valves.
Pumping downhill to the valve should be avoided unless the transport line is very short and the ele-
vation between the discharge line out of the tank and the valve is less than about 2 feet. If the valve
is located many feet below the dosing tank, random cycling may occur while the transport line drains
through the valve at the end of the cycle. A pressure sustaining valve located just before the distrib-
uting valve may overcome this problem in some instances.
Dosing Tank
Discharge Laterals
Distributing Valve Assembly
Transport Line
Figure 4:
Ideal valve location
NTP-VA-1
Rev. 1.2, © 11/03
Orenco Systems®, Inc.
Page 4 of 6
System Startup
Refer to the Hydrotek Valve booklet that is provided with the distributing valve assembly for the
sequencing of the valve outlets. The transport line should always be flushed with clean water before
installing the valve. Any sand, gravel, or other foreign objects that may have been in the pipe during
installation can easily become lodged in the distributing valve, causing malfunction.
With the pump running, alternately close and open the ball valve on the distributing valve assembly
to check proper rotation of the valve. (Note: If check valves are used on the lines after the distribut-
ing valve, the pump may need to be turned on and off to allow the pressure to be released from the
valve.) If visual operation of which zone is operating is not possible, watch the clear pipe on each
line for indication of which zone is operating.
Maintenance
Annually check for proper operation by following procedures listed in the Hydrotek Valve booklet
and system startup procedures listed above.
Troubleshooting
1. PROBLEM: Valve does not change or cycle to next zone or outlet
CAUSE: The stem and disk assembly is not rotating when water flow is turned off and then
back on.
SOLUTION 1: Ensure that there is no debris inside the cam. Clean and carefully reinstall the cam.
SOLUTION 2: If fewer than the maximum number of outlets are being used, check the installation
of the cam. Ensure that the stem and disk assembly is not being held down by an
improperly installed cam. Refer to the cam replacement instructions.
h
Check Valves if h>2'-0"
Distributing Valve Assembly
Transport Line
Dosing Tank
Pressure Release
Line if h>2'-0"
Discharge Laterals
Figure 5:
Valve assembly below final discharge point
NTP-VA-1
Rev. 1.2, © 11/03
Orenco Systems®, Inc.
Page 5 of 6
SOLUTION 3: Remove the valve top and check for proper movement of stem and disk assembly.
Check for and remove any debris or foreign objects that may jam or retard the
movement of the disk.
SOLUTION 4: Check for freedom of movement of stem and disk assembly up and down over the
center pin in bottom of valve. Scale deposits may build up on the pin and hold stem
and disk assembly down. Clean pin and again check for freedom of movement.
SOLUTION 5: Be sure that all operating outlets are not capped and that the flow to operating zones
is not restricted in any manner. This would cause pressure to build up in the valve
and lock the stem and disk assembly in the down position.
SOLUTION 6: The backflow of water from uphill lines may be preventing the valve from cycling
properly. This can happen when the valve is placed too far below an elevated line.
If the valve cannot be placed close to the high point of the system, a check valve
should be installed near the valve in the outlet line that runs uphill from the valve
and a drain line installed just prior to the valve to relieve the pressure.
2. PROBLEM: Water comes out of all the valve outlets
CAUSE: Stem and disk assembly not seating properly on valve outlet.
SOLUTION 1: Check for sufficient water flow. A minimum flow rate is required to properly seat
the disk as shown in Table 1.
SOLUTION 2: Remove the valve top and check the inside walls to ensure that nothing is interfering
with the up and down movement of the stem and disk assembly inside the valve.
SOLUTION 3: Make sure that the operating outlets are not capped and that the flow to the operat-
ing zones are not restricted in any manner.
3. PROBLEM: Valve skips outlets or zones
CAUSE: Pumping into an empty transport line — especially downhill — may cause the valve
to skip outlets from pockets of air allowing the rubber flap disk to raise during a
cycle.
SOLUTION 1: Keep the transport line full.
SOLUTION 2: If the line must remain empty between cycles, use a larger diameter transport line
laid at a constant grade to prevent air pockets from forming.
CAUSE: The stem and disk assembly is being advanced past the desired outlet.
SOLUTION 1: Ensure that the correct cam for the desired number of zones is installed and that the
outlet lines are installed to the correct outlet ports of the valve as indicated by the
zone numbers on the top of the cam.
NTP-VA-1
Rev. 1.2, © 11/03
Orenco Systems®, Inc.
Page 6 of 6
Distributing Valves
General
Orenco’s Automatic Distributing Valve Assemblies are
mechanically operated and sequentially redirect the
pump’s flow to multiple zones or cells in a distribution
field. Valve actuation is accomplished by a combination
of pressure and flow. Automatic Distributing Valve
Assemblies allow the use of smaller horsepower pumps
on large sand filters and drainfields. For example, a large
community drainfield requiring 300 gpm can use a six-line
Valve Assembly to reduce the pump flow rate requirement
to only 50 gpm.
Orenco only warrants Automatic Distributing Valves when
used in conjunction with High-Head Effluent Pumps with
Biotube®Pump Vaults to provide pressure and flow
requirements, and to prevent debris from fouling valve
operation. An inlet ball valve and a section of clear pipe
and union for each outlet are provided for a complete
assembly that is easy to maintain and monitor. Ideal
valve location is at the high point in the system. Refer to
Automatic Distributing Valve Assemblies (NTP-VA-1) for
more information.
Standard Models
V4402A, V4403A, V4404A, V4605A, V4606A, V6402A, V6403A,
V6404A, V6605A, V6606A.
Nomenclature
Submittal
Data Sheet
Side View
ball valve
elbow
Top View
coupling
clear pipe
distributing valve
union
Bottom View
elbows
Specifications
Materials of Construction
All Fittings: Sch. 40 PVC per ASTMspecification
Unions: Sch. 80 PVCper ASTMspecification
Ball Valve: Sch. 40 PVCper ASTMspecification
Clear Pipe: Sch. 40 PVCper ASTMspecification
V4XXX Distributing Valves: High-strength noncorrosive ABSpolymer and stainless steel
V6XXX Distributing Valves: High-strength noncorrosive ABSpolymer, stainless steel, and die cast metal
NSU-SF-VA-1
Rev. 3.0, © 4/03
Page 1 of 2
Applications
Automatic Distributing Valve Assemblies are used to pressurize
multiple zone distribution systems including textile filters, sand
filters and drainfields.
V
Indicates assembly
Model series:
44 = 4400 series (2-4 outlets)
46 = 4600 series (5-6 outlets)
64 = 6400 series (2-4 outlets)
66 = 6600 series (5-6 outlets)
Distributing valve
Number of active outlets
A
Distributing Valves (continued)
Flow (gpm)Head Loss Through Assembly (ft.)0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
0
5
10
15
20
25
30
35
V4400A
V6600A
V6400A
V4600A
NSU-SF-VA-1
Rev. 3.0, © 4/03
Page 2 of 2
Model Inlet Size (in.) Outlets Size (in.) Flow range (gpm) Max Head (ft.) Min. Enclosure
V4402A 1.25 1.25 10 - 40 170 VB1217
V4403A 1.25 1.25 10 - 40 170 VB1217
V4404A 1.25 1.25 10 - 40 170 VB1217
V4605A 1.25 1.25 10 - 25 170 RR2418
V4606A 1.25 1.25 10 - 25 170 RR2418
V6402A 1.5 1.5 15 - 100 345 RR2418
V6403A 1.5 1.5 15 - 100 345 RR2418
V6404A 1.5 1.5 15 - 100 345 RR2418
V6605A 1.5 1.5 15 - 100 345 RR2418
V6606A 1.5 1.5 15 - 100 345 RR2418
Orenco Systems® Inc. , 814 Airway Ave., Sutherlin, OR 97479 USA • 800-348-9843 • 541-459-4449 • www.orenco.com NTD-SF-OS-1
Rev. 1.1, © 09/14
Page 1 of 1
Orifice Shields
Technical Data SheetOrenco®
General
Orenco Orifice Shields snap-fit onto laterals. They may be placed on
top of or beneath a lateral, depending on the location of the orifice.
Orifice shields are covered by method-of-use patent # 5,360,556.
Standard Models
OS075, OS100, OS125, OS150, OS200
Product Code Diagram
Material of Construction
PVC per ASTM D-1784
Physical Specifications
Model Shield O.D. Lateral pipe O.D.
in. (mm) in. (mm)
OS075 3.5 (89) 1.05 (27)
OS100 3.5 (89) 1.315 (33)
OS125 3.5 (89) 1.66 (42)
OS150 4.5 (114) 1.90 (48)
OS200 4.5 (114) 2.375 (60)
Applications
Orenco® Orifice Shields are used in a pressurized distribution system
to protect the orifices from backfill debris that might cause orifice
blockage.
Orifice shield installed on lateral pipe, standard configuration
Shield
Orifice
Cutaway view, standard configuration
Shield
Orifice
Cutaway view, cold weather configuration
OS
Lateral pipe size, nominal:
075 = 0.75 in. (20 mm)
100 = 1.00 in. (25 mm)
125 = 1.25 in. (32 mm)
150 = 1.50 in. (40 mm)
200 = 2.00 in. (50 mm)
Orifice shield
Item#
SEK- Orenco® Flushing Assemblies
Flushing Assemblies
Orenco® flushing assemblies provide easy
access for lateral maintenance. Flushing
assembly kits include a PVC sweep with ball
valve and a polyethylene valve box enclosure.
Orenco® flushing assemblies are available in the
following sizes:
• 1” diameter
• 1.25” diameter
• 1.5” diameter
• 2" diameter
Valve Boxes
Orenco® valve boxes are used to provide access
to flushing assemblies. Constructed of
polyethylene.
Valve Box, 7-in. diameter round enclosure
Note: Kits include VB7 valve box enclosure.
(719) 395-6764
Fax: (719) 395-3727
28005 County Road 317
P.O. Box 925
Buena Vista, CO 81211
Water &
Wastewater
• Systems
• Products
• Service Website: http://valleyprecast.com/
Email: frontdesk@valleyprecast.com
[Quoted text hidden]
--
Claire E. Lewandowski, REHS
Environmental Health Specialist III
Eagle County Environmental Health
970-328-8747
claire.lewandowski@eaglecounty.us
environment@eaglecounty.us
P.O. Box 179
590 Broadway
Eagle, CO 81631
www.eaglecounty.us
Claire Lewandowski <claire.lewandowski@eaglecounty.us>Mon, Apr 9, 2018 at 4:50 PM
To: James Dykann <jdykann@yahoo.com>, Carla Ostberg <carla.ostberg@gmail.com>
Cc: environment@eaglecounty.us
Hi James and Carla,
I am reviewing the alteration design for the tank replacement at 1645 Emma Spur. The tank replacement design is for a 5
bedroom residence, however the assessor records for 1645 Emma Spur show the residence as having 6 bedrooms. The
tank will have to be sized to accommodate a 6 bedroom residence as shown on the assessor's record and resubmitted.
Please "reply all" with questions.
Thank you,
Claire
On Mon, Apr 9, 2018 at 11:49 AM, Giovanna Harkay <giovanna.harkay@eaglecounty.us> wrote:
[Quoted text hidden]
--
Claire E. Lewandowski, REHS
Environmental Health Specialist III
Eagle County Environmental Health
970-328-8747
claire.lewandowski@eaglecounty.us
environment@eaglecounty.us
P.O. Box 179
590 Broadway
Eagle, CO 81631
www.eaglecounty.us
Carla Ostberg <carla.ostberg@gmail.com>Mon, Apr 9, 2018 at 8:05 PM
To: Claire Lewandowski <claire.lewandowski@eaglecounty.us>
Thanks Claire,
I will confer with my client and get back to you!!
Sent from my iPhone
[Quoted text hidden]
James Dykann <jdykann@yahoo.com>Tue, Apr 10, 2018 at 2:39 PM
Reply-To: James Dykann <jdykann@yahoo.com>
To: Claire Lewandowski <claire.lewandowski@eaglecounty.us>, Carla Ostberg <carla.ostberg@gmail.com>
Cc: "environment@eaglecounty.us" <environment@eaglecounty.us>
Hello Claire
Our thinking is maybe we should go with what county records have for our bedroom count (6).
That way we have all our options are open.
We'll resubmit our plan when it is ready.
Thank you for your help
Jim and Marguerite Dykann
On Monday, April 9, 2018 4:50 PM, Claire Lewandowski <claire.lewandowski@eaglecounty.us> wrote:
Hi James and Carla,
I am reviewing the alteration design for the tank replacement at 1645 Emma Spur. The tank
replacement design is for a 5 bedroom residence, however the assessor records for 1645 Emma
Spur show the residence as having 6 bedrooms. The tank will have to be sized to accommodate a
6 bedroom residence as shown on the assessor's record and resubmitted.
Please "reply all" with questions.
Thank you,
Claire
On Mon, Apr 9, 2018 at 11:49 AM, Giovanna Harkay <giovanna.harkay@eaglecounty.us> wrote:
Good Morning, Mr. Dykann. The review of your septic permit will be done sometime this week.
We have several applications under review at this time and our inspectors are working extra
hours to finished this process (for everyone, considering the order in when it was request).
Please, be a little patient. I will be sending the permit to you (via email) a soonest is done.
We appreciated your consideration.
Have a nice day,
Giovanna.
Giovanna A Harkay
Administrative Fiscal Tech IV
Eagle County Government
Environmental Health Department
environment@eaglecounty.us
On Mon, Apr 9, 2018 at 11:17 AM, James Dykann <jdykann@yahoo.com> wrote:
Hi Giovanna
Any action on my septic permit?
Thank you,
Jim Dykann
[Quoted text hidden]
[Quoted text hidden]
Claire Lewandowski <claire.lewandowski@eaglecounty.us>Tue, Apr 10, 2018 at 3:07 PM
To: James Dykann <jdykann@yahoo.com>
Cc: Carla Ostberg <carla.ostberg@gmail.com>, "environment@eaglecounty.us" <environment@eaglecounty.us>
Hi James,
Thank you for the update. I am not sure if you received the message I left in regards to the Assessor, I will let the Patrick,
who is the Assessor that is going to be in your area tomorrow, know that he does not need to stop by.
We will look for the updated plans.
Have a good evening!
[Quoted text hidden]
Claire Lewandowski <claire.lewandowski@eaglecounty.us>Tue, Apr 10, 2018 at 3:36 PM
To: Patrick Corcoran <patrick.corcoran@eaglecounty.us>
Hi Patrick,
Thank you for your help today, I really appreciate making time available tomorrow to help, but it looks like they do not
need you to stop by 1645 Emma Spur tomorrow. After speaking with the owner, they decided to not reassess the total
number of bedrooms in their house, in order to have their options open.
Hope you have a great day!
[Quoted text hidden]
James Dykann <jdykann@yahoo.com>Tue, Apr 10, 2018 at 4:28 PM
Reply-To: James Dykann <jdykann@yahoo.com>
To: Claire Lewandowski <claire.lewandowski@eaglecounty.us>
Hi Claire
I'm sorry, I missed that message.
If Patrick could stop by tomorrow, that would be great to have his determination of our bedroom count.
Am I too late?
thanks
On Tuesday, April 10, 2018 3:07 PM, Claire Lewandowski <claire.lewandowski@eaglecounty.us> wrote:
Hi James,
Thank you for the update. I am not sure if you received the message I left in regards to the
Assessor, I will let the Patrick, who is the Assessor that is going to be in your area tomorrow, know
that he does not need to stop by.
We will look for the updated plans.
Have a good evening!
On Tue, Apr 10, 2018 at 2:39 PM, James Dykann <jdykann@yahoo.com> wrote:
Hello Claire
Our thinking is maybe we should go with what county records have for our bedroom count (6).
That way we have all our options are open.
We'll resubmit our plan when it is ready.
Thank you for your help
Jim and Marguerite Dykann
On Monday, April 9, 2018 4:50 PM, Claire Lewandowski <claire.lewandowski@ eaglecounty.us> wrote:
Hi James and Carla,
I am reviewing the alteration design for the tank replacement at 1645 Emma Spur. The tank
replacement design is for a 5 bedroom residence, however the assessor records for 1645 Emma
Spur show the residence as having 6 bedrooms. The tank will have to be sized to accommodate
a 6 bedroom residence as shown on the assessor's record and resubmitted.
Please "reply all" with questions.
Thank you,
Claire
[Quoted text hidden]
[Quoted text hidden]
Patrick Corcoran <patrick.corcoran@eaglecounty.us>Wed, Apr 11, 2018 at 7:47 AM
To: Claire Lewandowski <claire.lewandowski@eaglecounty.us>
Claire
Thanks for the heads up. Have a good day
[Quoted text hidden]
--
Patrick Corcoran
Eagle County Assessor's Office
Certified Residential Appraiser
970 328-8653
www.eaglecounty.us
Claire Lewandowski <claire.lewandowski@eaglecounty.us>Wed, Apr 11, 2018 at 8:28 AM
To: James Dykann <jdykann@yahoo.com>
Hi James,
Sorry I just got your email. I text the assessor and requested the drop by, he says he can still make it. Can he get access
at 10am?
[Quoted text hidden]
Claire Lewandowski <claire.lewandowski@eaglecounty.us>Wed, Apr 11, 2018 at 8:41 AM
To: James Dykann <jdykann@yahoo.com>
Hi Jim,
Got your message. Patrick Corcoran from the Eagle County assessor's department will be there around 10am.
I hope everything can get straightened out!
[Quoted text hidden]
Patrick Corcoran <patrick.corcoran@eaglecounty.us>Thu, Apr 12, 2018 at 12:33 PM
To: Claire Lewandowski <claire.lewandowski@eaglecounty.us>
Claire
The inspection went well and it was as I expected. One room on the main floor of the house, did not fit a true definition of
a bedroom and therefore it will be removed from the property record card. The property record card will now show 5
bedrooms instead of 6 bedrooms. However, this will not show up in the the County's Public records till May. If you have
any questions or concerns feel free to call or email me.
[Quoted text hidden]