Press Alt + R to read the document text or Alt + P to download or print.
This document contains no pages.
HomeMy WebLinkAbout577 Fox Run Dr - 239128407025Environmental Health
Department
P.O. Box 179
500 Broadway
Eagle, CO 81631-0179
Phone: (970) 328-8730
Fax: (970) 328-7185
Permit
Permit No. OWTS-019289-2020
Permit Type: OWTS Permit
Work Classification: New
Permit Status: Active
Issue Date: 8/11/2020 Expires: 12/9/2020
On-Site Wastewater
Treatement System
Project Address Parcel Number
577 FOX RUN DR, EL JEBEL AREA,239128407025
Owner Information Address
Chris Hjorth Phone:
Cell: (970) 445-0777
Email: norskbuilders@gmail.com
Inspections:
For Inspections Call: (970) 328-8755
and call the Design Engineer
Engineer Phone Email
RB Civil LLC, Romeo Baylosis (970) 471-1103 romeo@rbcivil.com
Contractor License Number Phone Email
Permitted Construction / Details:
A licensed installer has not been identified. No person shall install, renovate, or repair an OWTS in Eagle County
(EC) without a valid EC Systems Contractor License. Any person that conducts a business as a systems contractor
without having obtained a valid license section commits a Class 1 petty offense as defined in section 18-1.3-503,
C.R.S. Please notify the department when an installer is identified, prior to installation of the OWTS.
Install the OWTS exactly as depicted in the CBO Inc design, prepared by Carla Ostberg, November 15, 2019, signed,
stamped, and dated November 26, 2019 by Romeo A. Baylosis, PE. The system is designed to serve a six bedroom
single family residence.
The OWTS consists of a 2,000 gallon, two-compartment Valley Precast concrete septic tank, with an Orenco ProPak
pumping system and model PF3005 pump in the second compartment with floats set to dose 65 gallons (prior to
drain back) of effluent a maximum of 75 feet to an Orenco model 6605 Automatic Distribution Valve (ADV), set on
compacted screened gravel at the high point of the system and made accessible at grade in an insulated water-tight
riser. The ADV will alternate pressure-dosed effluent between five shallow trenches, each consisting of 18 Infiltrator
Quick4 chambers, for a total of 90 chambers, equivalent to 1080 square feet of soil treatment area. Scarify the trench
sidewalls and bottoms prior to placement of chambers. Be sure to maintain a minimum setback of 25 feet from the
STA to the water line.
Contact Eagle County Environmental Health and the design engineer well in advance of requesting inspections prior
to backfilling any component of the OWTS. The design engineer is responsible for conducting all inspections
necessary to certify the installation and assure the functionality of the system. System certification, along with
photos and a record drawing is required to be submitted to and approved by, Eagle County Environmental Health
prior to the use of the system or occupancy of the dwelling.
THIS PERIMT EXPIRES BY TIME LIMITATION AND BECOMES NULL AND VOID IF THE WORK AUTHORIZED BY THE PERMIT IS NOT COMMENCED WITHIN 120 DAYS OF
ISSUANCE, OR BEFORE THE EXPIRATION OF AN ASSOCIATED BUILDING PERMIT
Issued by: Environmental Health Department, Eagle County, CO
Claire Lewandowski
Date
August 11, 2020
CONDITIONS
1.
2.ALL INSTALLATIONS MUST COMPLY WITH ALL REQUIREMENTS OF THE EAGLE COUNTY PUBLIC HEALTH AGENCY ON-SITE WASTEWATER TREATMENT SYSTEM
REGULATIONS ADOPTED PURSUANT TO AUTHORITY GRANTED IN CR.S. 25-10-101, et seq., AS AMENDED
3.THIS PERMIT IS VALID ONLY FOR PERFORMING WORK ON OWTS ASSOCIATED WITH STRUCTURES WHICH HAVE FULLY COMPLIED WITH COUNTY ZONING AND
BUILDING REQUIREMENTS CONNECTION TO, OR USE WITH, ANY DWELLING OR STRUCTURE NOT APPROVED BY THE ZONING AND BUILDING DEPARTMENTS
SHALL AUTOMATICALLY BE A VIOLATION OF A REQUIREMENT OF THE PERMIT AND WILL RESULT IN BOTH LEGAL ACTION AND REVOCATION OF THE PERMIT
4.1.6(A)(1) EAGLE COUNTY PUBLIC HEALTH AGENCY ON-SITE WASTEWATER TREATMENT SYSTEM REGULATIONS REQUIRES ANY PERSON WHO CONSTRUCTS,
ALTERS OR INSTALLS AN ON-SITE WASTEWATER TREATMENT SYSTEM TO BE LICENSED
Tuesday, August 11, 2020 1
Inspection Result
Eagle County, Colorado
P.O. Box 179 500 Broadway Eagle, CO
Phone: (970) 328-8730 Fax: (970) 328-7185
IVR Phone: 1-866-701-3307
Inspection Number: INSP-515016-2022 Permit Number: OWTS-019289-2020
Inspection Date: 05/31/2022
Inspector: Lewandowski, Claire
Permit Type: OWTS Permit
Inspection Type: OWTS Final Inspection
Work Classification: NewOwner:Norsk Builders LTD
Job Address:577 FOX RUN DR IVR Pin Number:190890
EL JEBEL AREA, CO Project:<NONE>
Parcel Number:239128407025
Contractor:Phone: / Cell: (970) 445-0777Norsk Builders LTD
Inspection Status: Approved
Inspection Notes
The above-referenced permit has been inspected and finalized.
Additional information about the maintenance of your septic system needs can be accessed through our website links, provided
on the Environmental Health Department’s septic system resource page.
Be aware that changes in the use of your property or alterations of your building may require commensurate changes to, or
relocation of, your septic system. Landscape features, trees with taproots, irrigation systems, and parking areas above the soil
treatment area can cause a premature system failure. It is equally important that you notice and immediately repair dripping
faucets and hissing toilets as this will certainly cause the system to fail. If you have any questions regarding this information,
please contact us at (970) 328-8755 and reference the OWTS septic permit number.
Inspector Comments
Added Item: Septic Tank
Passed
Added Item: Record Drawing
Received
Added Item: Record Photos
Received
Added Item: Final Certification Letter
Prepared by Carla Ostberg, dated June 13, 2022
Added Item: Pressure Distribution
Valley Precast out of Buena Vista performed start up on the pumping system
Added Item: General Plan
Passed
Wednesday, June 15, 2022
For more information visit: http://www.eaglecounty.us
Page 1 of 2
Added Item: Soil Treatment Area (STA)
Passed
Added Item: Identification of Systems Contractor
Eagle County Licensed Installer Norsk Builders installed the system.
Wednesday, June 15, 2022
For more information visit: http://www.eaglecounty.us
Page 2 of 2
CBO Inc.
129 Cains Lane
Carbondale, CO 81623
970.309.5259
carla.ostberg@gmail.com
June 13, 2022 Project No. C1484
Chris Hjorth
norskbuilders@gmail.com
Onsite Wastewater Treatment System (OWTS) Installation Observations
577 Fox Run
Eagle County, Colorado
Permit Number OWTS-019289-2020
Chris,
CBO Inc. observed the installation of the onsite wastewater treatment system (OWTS) on November 9,
2021 for the subject property. Norsk Builders installed the system.
The OWTS design is based on 6-bedrooms. An average daily wastewater flow of 675 GPD was used.
We verified the water line was installed at least 25-feet from the soil treatment area (STA).
A new, 4-inch diameter SDR-35 sewer line with a double sweep clean-out and minimum 2% grade was
installed connecting the house to the septic tank. A new 2000-gallon, two-compartment Valley Precast
septic tank was installed with an Orenco® ProPak and PF3005 pump in the second compartment. The
floats were set to dose approximately 65 gallons each pump cycle, allowing for approximately 8 gallons
of drain back into the pump chamber after each pump cycle.
Risers were installed on the septic tank to bring access to grade. The control panel is located within line
of sight of the septic tank. Valley Precast out of Buena Vista performed start up on the pumping system.
A 1.5-inch diameter Schedule 40 pump line was installed from the pump to an Orenco® automatic
distributing valve (ADV), model 6605. This pump line has a minimum 1% grade for proper drain back into
the tank after each pump cycle. The ADV was placed at a high point in the system and placed in an
insulated riser with access from grade.
Effluent is pressure dosed through 1.5-inch diameter pipes to five trenches, each with 15 ‘ARC’ ADS
chambers, for a total of 75 chambers and 1125 square feet of infiltrative area. There was at least 4-feet
of undisturbed soil between each trench. Effluent is pressure dosed to 1.5-inch diameter laterals, which
were hung with zip ties from the underside of the chambers. Laterals have 5/32-inch diameter orifices
facing up, with the exception of the first and last holes facing down for drainage. The orifices were
placed 3-feet on center. Each lateral ends in a 90 degree ell facing up with a ball valve for flushing.
Valves may be placed in a valve box, accessible from grade, for access. Inspection ports were placed at
the beginning and end of each trench. Ports may be cut to grade and covered with a valve box for
access.
The OWTS was generally installed according to specifications. This observation is not a guarantee of
workmanship and/or parts and materials. CBO Inc. should be notified if changes are made to the OWTS
in the future. Any additional OWTS construction must be according to the county regulations.
6-13-2022
LIMITS: Observations are limited to components that are visible at the time of the inspection. The installer must
have documented and demonstrated knowledge of the requirements and regulations of the county in
which they are working. The quality of the installation is dependent on the expertise of the installer, soil
type, and weather conditions.
Please call with questions.
Sincerely,
CBO Inc. Reviewed By:
Carla Ostberg, MPH, REHS Romeo Baylosis, P.E.
Piping from ADV to chamber trenches
Sewer line from house to septic tank Septic tank set
Inlet side of septic tank ADV
Chamber trench ARC ADS chambers used (3’ x 5’)
View of trenches Inspection ports and flushing valves installed
Environmental Health
Department
P.O. Box 179
500 Broadway
Eagle, CO 81631-0179
Phone: (970) 328-8730
Fax: (970) 328-7185
Permit
Permit No. OWTS-019289-2020
Permit Type: OWTS Permit
Work Classification: New
Permit Status: Active
Issue Date: 8/11/2020 Expires: 12/9/2020
On-Site Wastewater
Treatement System
Project Address Parcel Number
577 FOX RUN DR, EL JEBEL AREA,239128407025
Owner Information Address
Chris Hjorth Phone:
Cell: (970) 445-0777
Email: norskbuilders@gmail.com
Inspections:
For Inspections Call: (970) 328-8755
and call the Design Engineer
Engineer Phone Email
RB Civil LLC, Romeo Baylosis (970) 471-1103 romeo@rbcivil.com
Contractor License Number Phone Email
Permitted Construction / Details:
A licensed installer has not been identified. No person shall install, renovate, or repair an OWTS in Eagle County
(EC) without a valid EC Systems Contractor License. Any person that conducts a business as a systems contractor
without having obtained a valid license section commits a Class 1 petty offense as defined in section 18-1.3-503,
C.R.S. Please notify the department when an installer is identified, prior to installation of the OWTS.
Install the OWTS exactly as depicted in the CBO Inc design, prepared by Carla Ostberg, November 15, 2019, signed,
stamped, and dated November 26, 2019 by Romeo A. Baylosis, PE. The system is designed to serve a six bedroom
single family residence.
The OWTS consists of a 2,000 gallon, two-compartment Valley Precast concrete septic tank, with an Orenco ProPak
pumping system and model PF3005 pump in the second compartment with floats set to dose 65 gallons (prior to
drain back) of effluent a maximum of 75 feet to an Orenco model 6605 Automatic Distribution Valve (ADV), set on
compacted screened gravel at the high point of the system and made accessible at grade in an insulated water-tight
riser. The ADV will alternate pressure-dosed effluent between five shallow trenches, each consisting of 18 Infiltrator
Quick4 chambers, for a total of 90 chambers, equivalent to 1080 square feet of soil treatment area. Scarify the trench
sidewalls and bottoms prior to placement of chambers. Be sure to maintain a minimum setback of 25 feet from the
STA to the water line.
Contact Eagle County Environmental Health and the design engineer well in advance of requesting inspections prior
to backfilling any component of the OWTS. The design engineer is responsible for conducting all inspections
necessary to certify the installation and assure the functionality of the system. System certification, along with
photos and a record drawing is required to be submitted to and approved by, Eagle County Environmental Health
prior to the use of the system or occupancy of the dwelling.
THIS PERIMT EXPIRES BY TIME LIMITATION AND BECOMES NULL AND VOID IF THE WORK AUTHORIZED BY THE PERMIT IS NOT COMMENCED WITHIN 120 DAYS OF
ISSUANCE, OR BEFORE THE EXPIRATION OF AN ASSOCIATED BUILDING PERMIT
Issued by: Environmental Health Department, Eagle County, CO
Claire Lewandowski
Date
August 11, 2020
CONDITIONS
1.
2.ALL INSTALLATIONS MUST COMPLY WITH ALL REQUIREMENTS OF THE EAGLE COUNTY PUBLIC HEALTH AGENCY ON-SITE WASTEWATER TREATMENT SYSTEM
REGULATIONS ADOPTED PURSUANT TO AUTHORITY GRANTED IN CR.S. 25-10-101, et seq., AS AMENDED
3.THIS PERMIT IS VALID ONLY FOR PERFORMING WORK ON OWTS ASSOCIATED WITH STRUCTURES WHICH HAVE FULLY COMPLIED WITH COUNTY ZONING AND
BUILDING REQUIREMENTS CONNECTION TO, OR USE WITH, ANY DWELLING OR STRUCTURE NOT APPROVED BY THE ZONING AND BUILDING DEPARTMENTS
SHALL AUTOMATICALLY BE A VIOLATION OF A REQUIREMENT OF THE PERMIT AND WILL RESULT IN BOTH LEGAL ACTION AND REVOCATION OF THE PERMIT
4.1.6(A)(1) EAGLE COUNTY PUBLIC HEALTH AGENCY ON-SITE WASTEWATER TREATMENT SYSTEM REGULATIONS REQUIRES ANY PERSON WHO CONSTRUCTS,
ALTERS OR INSTALLS AN ON-SITE WASTEWATER TREATMENT SYSTEM TO BE LICENSED
Tuesday, August 11, 2020 1
06/13/2022
To Whom It May Concern:
We have been to the following site(s):
577 Fox Run Drive, Carbondale
We have verified that the system was started properly. The System went through several
cycles with no issues.
Sincerely,
Scott McIntosh
Service Manager
832‐R‐13‐002
33 Four Wheel Drive Road
Carbondale, CO 81623
970.309.5259
carla.ostberg@gmail.com
November 15, 2019 Project No. C1484
Chris Hjorth
norskbuilders@gmail.com
Subsurface Investigation and Onsite Wastewater Treatment System Design
6-Bedroom Residence
577 Fox Run Drive
Eagle County, Colorado
Chris,
CBO Inc. performed a subsurface investigation and completed an onsite wastewater treatment system
(OWTS) design for the subject residence. The 2.004-acre property is located outside of Basalt, in an
area where OWTSs are necessary.
Legal Description: Subdivision: FOX RUN MEADOWS PUD Lot: 16
Parcel ID: 2391-284-07-025
SITE CONDITIONS
The property is current undeveloped. A 6-bedroom residence is proposed.
The residence will be served potable water from a community water system. The water line will enter the
property from the north off Fox Run Drive. The water line will run along the east side of the driveway.
The water line will not come within 25-feet of any OWTS component.
The property in the proposed soil treatment area (STA) slopes at an approximate 6% slope to the east.
The area is vegetated with native grasses.
There should be no traffic or staging of material over the future STA site to avoid compaction of soils
prior to construction of the STA.
Table 1 describes the minimum required setback of OWTS components to physical features on the
property compared to approximate, proposed setback distances.
Table 1
OWTS Components and
Physical Features
Minimum Required Setback Approximate Proposed Setback
House to Septic Tank 5’ 7’
Septic Tank to Well 50’ n/a
Septic Tank to Water Course 50’ n/a
STA to House 20’ 22’
STA to Well 100’ n/a
STA to Water Course 50’ n/a
Page 2
SUBSURFACE
The subsurface was investigated on November 1, 2019 by digging two soil profile test pit excavations (Test
Pits). Visual and tactile soil analysis was completed by Carla Ostberg at the time of excavation.1
The materials encountered in the Test Pit #1 consisted of medium brown silty clay loam to a maximum
depth explored of 8.0-feet. No bedrock or groundwater was encountered.
The materials encountered in Test Pit #2 were similar to those encountered in Test Pit #1. The test pit
was explored to a maximum depth of 6.0-feet. No bedrock or groundwater was encountered.
A sample was taken from Test Pit #1 at approximately 3.0-feet below grade. The sieved sample formed
a ball and a ribbon 1-2 inches in length before breaking. The texture was more smooth than gritty. Soils
on the sidewall of the test pit had moderate structure grade. Soil peds had a blocky structure shape and
firm consistence.
STA sizing is based on Soil Type 3, Silty Clay Loam with moderate structure. A long term acceptance
rate (LTAR) of 0.35 gallons per square foot, will be used to design the OWTS.
Test Pit #1
1 Carla Ostberg holds a Certificate of Attendance and Examination from the CPOW Visual and Tactile
Evaluation of Soils Training.
Page 3
Backfill sidewall (moderate structure grade)
Sieved sample
Page 4
Test Pit #2
DESIGN SPECIFICATIONS
Design Calculations:
Average Design Flow = 75 GPD x 2 people/bedroom x 3 Bedrooms + 225 GPD (bedrooms 4, 5, and 6) =
675 GPD
Tank = min. 1750 gallons / 48-hour retention time = 1350 gallons
Use 2000-gallon tank with pump in second compartment
STA
LTAR = 0.35 GPD/SF
675 GPD / 0.35 GPD/SF x 0.8 (pressure dosed trenches) x 0.7 (chambers) = 1080 SF
The new OWTS design is based on 6-bedrooms. An average daily wastewater flow of 675 GPD will be
used.
For the purposes of this OWTS design, Benchmark Elevation at grade 7185’ has been established as
100’ (below finished floor of the garage which is 7186.5’). CBO Inc. should be notified of any
discrepancies or problems with grade elevations of proposed components during installation of the
OWTS.
OWTS Component Minimum Elevation
Primary Tank Inlet Invert Min. 98’ (7183’)
Automatic Distributing Valve 105’
Infiltrative Surface 104’
A new, 4-inch diameter SDR-35 sewer line with a double sweep clean-out and minimum 2% grade must
be installed.
The installation must include a 2000-gallon, two-compartment Valley Precast concrete septic
tank with an Orenco® ProPak pumping system and PF3005 pump. The floats must be set to dose
approximately 65 gallons each pump cycle, allowing for approximately 8 gallons of drain back into the
pump chamber after each pump cycle.
Risers must be installed on the septic tanks to bring access to grade. Handle extensions on both the
effluent filter and float tree must be installed if the riser height exceeds 1-foot. The control panel must be
located within line of sight of the septic tank. We recommend Valley Precast out of Buena Vista perform
start up on the pumping system.
Page 5
A 1.5-inch diameter Schedule 40 pump line must be installed from the pump to an Orenco® automatic
distributing valve (ADV), model 6605. This pump line must have a minimum 1% grade for proper drain back
into the tank after each pump cycle. The ADV must be placed at a high point in the system and be placed in
an insulated riser with access from grade. Screened rock must be placed below the ADV to support the
ADV and to assure the clear pipes existing the ADV remain visible for future inspection and maintenance.
Effluent will be pressure dosed through 1.5-inch diameter pipes to five trenches, each with 18 ‘Quick 4’
Infiltrator® chambers, for a total of 90 chambers and 1080 square feet of infiltrative area. There must be
at least 4-feet of undisturbed soil between each trench, although we recommend at least 6-feet. Effluent
will be pressure dosed to 1.5-inch diameter laterals, which must be hung with zip ties from the underside
of the chambers. Laterals will have 5/32-inch diameter orifices facing up, with the exception of the first
and last holes facing down for drainage. Orenco® Orifice Shields may be placed under each downward-
facing orifice. The orifices must be placed 3-feet on center. Each lateral must end in a 90 degree ell
facing up with a ball valve for flushing. Valves may be placed in a valve box, accessible from grade, for
access. Inspection ports must be placed at the beginning and end of each trench. Ports may be cut to
grade and covered with a valve box for access.
The component manufacturers are typical of applications used by contractors and engineers in this area.
Alternatives may be considered or recommended by contacting our office. Construction must be
according to Eagle County On-Site Wastewater Treatment System Regulations, the OWTS Permit provided
by Eagle County Environmental Health Department, and this design.
INSTALLATION CONTRACTOR
CBO Inc. expects that the installer be experienced and qualified to perform the scope of work outlined in this
design. The installer must review this design thoroughly and coordinate with our office in advance of
installation. Any additional conditions in this design or county permit must be completed and documented
prior to final approval of the OWTS installation. Communication between the installer and this office is
expected throughout the installation.
INSTALLATION OBSERVATIONS
CBO Inc. must view the OWTS during construction. The OWTS observation should be performed before
backfill, after placement of OWTS components. Septic tanks, distribution devices, pumps, dosing
siphons, and other plumbing, as applicable, must also be observed. CBO Inc. should be notified 48 hours
in advance to observe the installation.
In an effort to improve the accuracy of the record drawing, we request that the installer provide a
sketch of the installation, including path of the sewer lines, water line installation (if applicable),
septic tank location, STA location, and measurements from building corners or another fixed
objects on the property. This sketch is most easily provided on Sheet W2.0 of the OWTS Design
Packet. Photographs of the installation and final cover are also requested to supplement our installation
documentation.
REVEGETATION REQUIREMENTS
An adequate layer of good quality topsoil capable of supporting revegetation shall be placed over the entire
disturbed area of the OWTS installation. A mixture of native grass seed that has good soil stabilizing
characteristics (but without taproots), provides a maximum transpiration rate, and competes well with
successional species. No trees or shrubs, or any vegetation requiring regular irrigation shall be placed over
the area. Until vegetation is reestablished, erosion and sediment control measures shall be implemented
and maintained on site. The owner of the OWTS shall be responsible for maintaining proper vegetation
cover.
Page 6
11-26-2019
OPERATION INFORMATION AND MAINTENANCE
The property owner shall be responsible for the operation and maintenance of each OWTS servicing the
property. The property owner is responsible for maintaining service contracts for manufactured units,
alternating STAs, and any other components needing maintenance.
Geo-fabrics or plastics should not be used over the STA. No heavy equipment, machinery, or materials
should be placed on the backfilled STA. Machines with tracks (not wheels) should be used during
construction of the STA for better weight distribution. Livestock should not graze on the STA. Plumbing
fixtures should be checked to ensure that no additional water is being discharged to OWTS. For example, a
running toilet or leaky faucet can discharge hundreds of gallons of water a day and harm a STA.
If an effluent filter or screen has been installed in the OWTS, we recommend this filter or screen be cleaned
annually, or as needed. If the OWTS consists of a pressurized pump system, we recommend the laterals be
flushed annually, or as needed.
The homeowner should pump the septic tank every two years, or as needed gauged by measurement of
solids in the tank. Garbage disposal use should be minimized, and non-biodegradable materials should not
be placed into the OWTS. Grease should not be placed in household drains. Loading from a water softener
should not be discharged into the OWTS. No hazardous wastes should be directed into the OWTS.
Mechanical room drains should not discharge into the OWTS. The OWTS is engineered for domestic waste
only.
ADDITIONAL CONSTRUCTION NOTES
If design includes a pump, weep holes must be installed to allow pump lines to drain to minimize risk of
freezing. The pump shall have an audible and visual alarm notification in the event of excessively high-
water conditions and shall be connected to a control breaker separate from the high-water alarm breaker
and from any other control system circuits. The pump system shall have a switch so the pump can be
manually operated.
Extensions should be placed on all septic tank components to allow access to them from existing grade.
Backfill over the STA must be uniform and granular with no material greater than minus 3-inch.
LIMITS:
The design is based on information submitted. If soil conditions encountered are different from conditions
described in report, CBO Inc. should be notified. All OWTS construction must be according to the county
regulations. Requirements not specified in this report must follow applicable county regulations. The
contractor should have documented and demonstrated knowledge of the requirements and regulations of
the county in which they are working. Licensing of Systems Contractors may be required by county
regulation.
Please call with questions.
Sincerely,
CBO Inc. Reviewed By:
Carla Ostberg, MPH, REHS
Pump Selection for a Pressurized System - Single Family Residence Project
Norsk Builders LTD / 577 Fox Run Drive
Parameters
Discharge Assembly Size
Transport Length Before Valve
Transport Pipe Class
Transport Line Size
Distributing Valve Model
Transport Length After Valve
Transport Pipe Class
Transport Pipe Size
Max Elevation Lift
Manifold Length
Manifold Pipe Class
Manifold Pipe Size
Number of Laterals per Cell
Lateral Length
Lateral Pipe Class
Lateral Pipe Size
Orifice Size
Orifice Spacing
Residual Head
Flow Meter
'Add-on' Friction Losses
1.25
75
40
1.50
6605
45
40
1.50
7
20
40
1.50
5
72
40
1.50
5/32
3
5
None
0
inches
feet
inches
feet
inches
feet
feet
inches
feet
inches
inches
feet
feet
inches
feet
Calculations
Minimum Flow Rate per Orifice
Number of Orifices per Zone
Total Flow Rate per Zone
Number of Laterals per Zone
% Flow Differential 1st/Last Orifice
Transport Velocity Before Valve
Transport Velocity After Valve
0.68
25
17.1
1
4.4
2.7
2.7
gpm
gpm
%
fps
fps
Frictional Head Losses
Loss through Discharge
Loss in Transport Before Valve
Loss through Valve
Loss in Transport after Valve
Loss in Manifold
Loss in Laterals
Loss through Flowmeter
'Add-on' Friction Losses
2.0
1.4
5.9
0.8
0.1
0.5
0.0
0.0
feet
feet
feet
feet
feet
feet
feet
feet
Pipe Volumes
Vol of Transport Line Before Valve
Vol of Transport Line After Valve
Vol of Manifold
Vol of Laterals per Zone
Total Vol Before Valve
Total Vol After Valve
7.9
4.8
2.1
7.6
7.9
14.5
gals
gals
gals
gals
gals
gals
Minimum Pump Requirements
Design Flow Rate
Total Dynamic Head
17.1
22.8
gpm
feet
0 5 10 15 20 25 30 35 40
0
50
100
150
200
250
300
Net Discharge (gpm)
PumpData
PF3005 High Head Effluent Pump
30 GPM, 1/2HP
115/230V 1Ø 60Hz, 200V 3Ø 60Hz
PF3007 High Head Effluent Pump
30 GPM, 3/4HP
230V 1Ø 60Hz, 200/460V 3Ø 60Hz
PF3010 High Head Effluent Pump
30 GPM, 1HP
230V 1Ø 60Hz, 200/460V 3Ø 60Hz
PF3015 High Head Effluent Pump
30 GPM, 1-1/2HP
230V 1Ø 60Hz, 200/230/460V 3Ø 60Hz
Legend
System Curve:
Pump Curve:
Pump Optimal Range:
Operating Point:
Design Point:
Orenco Systems® Inc. , 814 Airway Ave., Sutherlin, OR 97479 USA • 800-348-9843 • 541-459-4449 • www.orenco.com NTD-BPP-1
Rev. 1.2, © 08/14
Page 1 of 4
Biotube® ProPak Pump Package™
Technical Data SheetOrenco®
60-Hz Series Pump Packages General
Orenco’s Biotube® ProPak™ is a complete, integrated pump package for
filtering and pumping effluent from septic tanks. And its patented pump
vault technology eliminates the need for separate dosing tanks.
This document provides detailed information on the ProPak pump vault
and filter, 4-in. (100-mm) 60-Hz turbine effluent pump, and control panel.
For more information on other ProPak components, see the following
Orenco technical documents:
• Float Switch Assemblies (NSU-MF-MF-1)
• Discharge Assemblies (NTD-HV-HV-1)
• Splice Boxes (NTD-SB-SB-1)
• External Splice Box (NTD-SB-SB-1)
Applications
The Biotube ProPak is designed to filter and pump effluent to either
gravity or pressurized discharge points. It is intended for use in a septic
tank (one- or two-compartment) and can also be used in a pump tank.
The Biotube ProPak is designed to allow the effluent filter to be removed
for cleaning without the need to remove the pump vault or pump, simpli-
fying servicing.
Complete packages are available for on-demand or timed dosing sys-
tems with flow rates of 20, 30, and 50-gpm (1.3, 1.9, and 3.2 L/sec),
as well as with 50 Hz and 60 Hz power supplies.
Standard Models
BPP20DD, BPP20DD-SX, BPP30TDA, BPP30TDD-SX, BBPP50TDA,
BPP50TDD-SX
Product Code Diagram
Biotube® ProPak™ pump package components.
4-in. (100-mm)
turbine effluent pump
Pump motor
Pump
liquid end
Pump vault
Support pipe
Discharge
assembly
Float collar
Float stem
Floats
Float
bracket
Biotube® filter
cartridge
Vault inlet holes
External splice box
(Optional; internal splice
box comes standard.)
Riser lid
(not included)
Riser (not
included)
Control panel
BPP
Pump flow rate, nominal:
20 = 20 gpm (1.3 L/sec)
30 = 30 gpm (1.9 L/sec)
50 = 50 gpm (3.2 L/sec)
Control panel application:
DD = demand-dosing
TDA = timed-dosing, analog timer
TDD = timed dosing, digital timer, elapsed time
meter & counters
Standard options:
Blank = 57-in. (1448-mm) vault height, internal
splice box, standard discharge assembly
68 = 68-in. (1727-mm) vault height
SX = external splice box
CW = cold weather discharge assembly
DB = drainback discharge assembly
Q = cam lock
MFV = non-mercury float
-
Biotube® ProPak™ pump vault
Technical Data SheetOrenco®
Orenco Systems® Inc. , 814 Airway Ave., Sutherlin, OR 97479 USA • 800-348-9843 • 541-459-4449 • www.orenco.com NTD-BPP-1
Rev. 1.2, © 08/14
Page 2 of 4
ProPak™ Pump Vault
Materials of Construction
Vault body Polyethylene
Support pipes PVC
Dimensions, in. (mm)
A - Overall vault height 57 (1448) or 68 (1727)
B - Vault diameter 17.3 (439)
C - Inlet hole height 19 (475)
D - Inlet hole diameter (eight holes total) 2 (50)
E - Vault top to support pipe bracket base 3 (76)
F - Vault bottom to filter cartridge base 4 (102)
ProPak™ pump vault (shown with Biotube filter and effluent pump)
Biotube® Filter Cartridge
Materials of Construction
Filter tubes Polyethylene
Cartridge end plates Polyurethane
Handle assembly PVC
Dimensions, in. (mm)
A - Cartridge height 18 (457)
B - Cartridge width 12 (305)
Performance
Biotube® mesh opening 0.125 in. (3 mm)*
Total filter flow area 4.4 ft2 (0.4 m2)
Total filter surface area 14.5 ft2 (1.35 m2)
Maximum flow rate 140 gpm (8.8 L/sec)
*0.062-in. (1.6-mm) filter mesh available
Biotube® filter cartridge (shown with float switch assembly)
AA
D
E
B B
C
E
Technical Data Sheet Orenco®
Orenco Systems® Inc. , 814 Airway Ave., Sutherlin, OR 97479 USA • 800-348-9843 • 541-459-4449 • www.orenco.com NTD-BPP-1
Rev. 1.2, © 08/14
Page 3 of 4
Pump Curves
Pump curves, such as those shown here, can help you determine
the best pump for your system. Pump curves show the relationship
between flow (gpm or L/sec) and pressure (TDH), providing a graphical
representation of a pump’s performance range. Pumps perform best
at their nominal flow rate, measured in gpm or L/sec.
4-in. (100-mm) Turbine Effluent Pumps
Orenco’s 4-in. (100 mm) Turbine Effluent Pumps are constructed of
lightweight, corrosion-resistant stainless steel and engineered plastics;
all are field-serviceable and repairable with common tools. All 60-Hz
PF Series models are CSA certified to the U.S. and Canadian safety
standards for effluent pumps, and meet UL requirements.
Power cords for Orenco’s 4-in. (100-mm) turbine effluent pumps are
Type SOOW 600-V motor cable (suitable for Class 1, Division 1 and 2
applications).
Materials of Construction
Discharge: Stainless steel or glass-filled polypropylene
Discharge bearing: Engineered thermoplastic (PEEK)
Diffusers: Glass-filled PPO
Impellers: Acetal (20-, 30-gmp), Noryl (50-gpm)
Intake screens: Polypropylene
Suction connection: Stainless steel
Drive shaft: 300 series stainless steel
Coupling: Sintered 300 series stainless steel
Shell: 300 series stainless steel
Lubricant: Deionized water and propylene glycol
Specifications
Nom. flow, Length Weight Discharge Impellers
gpm (L/sec) in. (mm) lb (kg) in., nominal 1
20 (1.3) 22.5 (572) 26 (11) 1.25 4
30 (1.9) 21.3 (541) 25 (11) 1.25 3
50 (3.2) 20.3 (516) 27 (12) 2.00 2
Performance
Nom. flow, hp (kW) Design Rated Min liquid
gpm (L/sec) flow amps cycles/day level, in. (mm) 2
20 (1.3) 0.5 (0.37) 12.3 300 18 (457)
30 (1.9) 0.5 (0.37) 11.8 300 20 (508)
50 (3.2) 0.5 (0.37) 12.1 300 24 (610)
1 Discharge is female NPT threaded, U.S. nominal size, to accommodate Orenco® discharge
hose and valve assemblies. Consult your Orenco Distributor about fittings to connect discharge
assemblies to metric-sized piping.
2 Minimum liquid level is for single pumps when installed in an Orenco Biotube® ProPak™ Pump
Vault.
10 20 30 40 6050 70
0.63 1.26 1.89 2.52 3.793.15 4.42
140
120
100
80
60
40
20
Flow in gallons per minute (gpm)
Flow in liters per second (L/sec)Total dynamic head (TDH) in feetTotal dynamic head (TDH) in metersPF 500511
43
37
30
24
18
12
6
PF 200511
PF 300511
Technical Data SheetOrenco®
Orenco Systems® Inc. , 814 Airway Ave., Sutherlin, OR 97479 USA • 800-348-9843 • 541-459-4449 • www.orenco.com NTD-BPP-1
Rev. 1.2, © 08/14
Page 4 of 4
AUTO
OFF
MAN
NN1
Control Panel (Demand Dose)
Orenco’s ProPak™ demand dose control panels are specifically engineered
for the ProPak pump package and are ideal for applications such as
demand dosing from a septic tank into a conventional gravity drainfield.
Materials of Construction
Enclosure UV-resistant fiberglass, UL Type 4X
Hinges Stainless steel
Dimensions, in. (mm)
A - Height 11.5 (290)
B - Width 9.5 (240)
C - Depth 5.4 (135)
Specifications
Panel ratings 120 V, 3/4 hp (0.56 kW), 14 A, single phase, 60 Hz
1. Motor-start contactor 16 FLA, 1 hp (0.75 kW), 60 Hz; 2.5 million cycles
at FLA (10 million at 50% of FLA)
2. Circuit 120 V, 10 A, OFF/ON switch, Single pole breakers
3. Toggle switch Single-pole, double-throw HOA switch, 20 A
4. Audio alarm 95 dB at 24 in. (600 mm), warble-tone sound, UL
Type 4X
5. Audio alarm 120 V, automatic reset, DIN rail mount silence
relay
6. Visual alarm 7/8-in. (22-mm) diameter red lens, “Push-to-silence,”
120 V LED, UL Type 4X
Control Panel (Timed Dose)
Orenco’s ProPak timed dose control panels are specifically engineered for
the ProPak pump package and are ideal for applications such as timed
dosing from a septic tank into a pressurized drainfield or mound. Analog or
digital timers are available.
Materials of Construction
Enclosure UV-resistant fiberglass, UL Type 4X
Hinges Stainless steel
Dimensions, in. (mm)
A - Height 11.5 (290)
B - Width 9.5 (240)
C - Depth 5.4 (135)
Specifications
Panel ratings 120 V, 3/4 hp (0.56 kW), 14 A, single phase, 60 Hz
Dual-mode Programmable for timed- or demand-dosing
(digital timed-dosing panels only)
1a. Analog timer 120 V, repeat cycle from 0.05 seconds to 30
(not shown) hours. Separate variable controls for OFF and
ON time periods
1b. Digital timer 120-V programmable logic unit with built-in LCD
(shown below) screen and programming keys. Provides control
functions and timing for panel operation
2. Motor-start contactor 16 FLA, 1 hp (0.75 kW), 60 Hz; 2.5 million cycles
at FLA (10 million at 50% of FLA)
3. Circuit breakers 120 V, 10 A, OFF/ON switch. Single pole 120 V
4. Toggle Switch Single-pole, double-throw HOA switch, 20 A
5. Audio alarm 95 dB at 24 in. (600 mm), warble-tone sound, UL
Type 4X
6. Visual alarm 7/8-in. (22-mm) diameter red lens, “Push-to-silence”,
120 V LED, UL Type 4X
Control panel, demand-dose Control panel, timed-dose (digital timer model shown)
1b
2
3
4
56
1
2
3
4
5
6
Orenco Systems® Inc. , 814 Airway Ave., Sutherlin, OR 97479 USA • 800-348-9843 • 541-459-4449 • www.orenco.com NTD-PU-PF-1
Rev. 2.2, © 09/14
Page 1 of 6
PF Series 4-inch (100-mm) Submersible Effluent Pumps
Technical Data SheetOrenco®
Applications
Our 4-inch (100-mm) Submersible Effluent Pumps are designed to
transport screened effluent (with low TSS counts) from septic tanks or
separate dosing tanks. All our pumps are constructed of lightweight,
corrosion-resistant stainless steel and engineered plastics; all are field-
serviceable and repairable with common tools; and all 60-Hz PF Series
models are CSA certified to the U.S. and Canadian safety standards for
effluent pumps, meeting UL requirements.
Orenco’s Effluent Pumps are used in a variety of applications, including
pressurized drainfields, packed bed filters, mounds, aerobic units, effluent
irrigation, effluent sewers, wetlands, lagoons, and more. These pumps
are designed to be used with a Biotube® pump vault or after a secondary
treatment system.
Features/Specifications
To specify this pump for your installation, require the following:
• Minimum 24-hour run-dry capability with no deterioration in pump life
or performance*
• Patented 1⁄8-inch (3-mm) bypass orifice to ensure flow recirculation
for motor cooling and to prevent air bind
• Liquid end repair kits available for better long-term cost of ownership
• TRI-SEAL™ floating impeller design on 10, 15, 20, and 30 gpm
(0.6, 1.0, 1.3, and 1.9 L/sec) models; floating stack design on 50 and
75 gpm (3.2 and 4.7 L/sec) models
• Franklin Electric Super Stainless motor, rated for continuous use and
frequent cycling
• Type SOOW 600-V motor cable
• Five-year warranty on pump or retrofit liquid end from date of manu-
facture against defects in materials or workmanship
* Not applicable for 5-hp (3.73 kW) models
Standard Models
See specifications chart, pages 2-3, for a list of standard pumps. For
a complete list of available pumps, call Orenco.
Product Code Diagram
PF -
Nominal flow, gpm (L/sec):
10 = 10 (0.6) 15 = 15 (1.0)
20 = 20 (1.3) 30 = 30 (1.9)
50 = 50 (3.2) 75 = 75 (4.7)
Pump, PF Series
Frequency:
1 = single-phase 60 Hz
3 = three-phase 60 Hz
5 = single-phase 50 Hz
Voltage, nameplate:
1 = 115* 200 = 200
2 = 230† 4 = 460
Horsepower (kW):
03 = 1⁄3 hp (0.25) 05 = ½ hp (0.37)
07 = ¾ hp (0.56) 10 = 1 hp (0.75)
15 = 1-½ hp (1.11) 20 = 2 hp (1.50)
30 = 3 hp (2.24) 50 = 5 hp (3.73)
Cord length, ft (m):‡
Blank = 10 (3) 20 = 20 (6)
30 = 30 (9) 50 = 50 (15)
* ½-hp (0.37kW) only
†220 volts for 50 Hz pumps
‡Note: 20-foot cords are available only for single-phase pumps through 1-½ hp
Franklin
Super Stainless
Motor
Franklin
Liquid End
Discharge Connection
Bypass Orifice
Suction Connection
LR80980
LR2053896
Powered by
Technical Data SheetOrenco®
Orenco Systems® Inc. , 814 Airway Ave., Sutherlin, OR 97479 USA • 800-348-9843 • 541-459-4449 • www.orenco.com NTD-PU-PF-1
Rev. 2.2, © 09/14
Page 2 of 6
Specifications, 60 Hz
Pump Model
PF100511 10 (0.6) 0.50 (0.37) 1 115 120 12.7 12.7 6 1 ¼ in. GFP 23.0 (660) 16 (406) 26 (12) 300
PF100512 10 (0.6) 0.50 (0.37) 1 230 240 6.3 6.3 6 1 ¼ in. GFP 23.0 (660) 16 (406) 26 (12) 300
PF10053200 10 (0.6) 0.50 (0.37) 3 200 208 3.8 3.8 6 1 ¼ in. GFP 23.0 (660) 16 (406) 26 (12) 300
PF100712 4, 5 10 (0.6) 0.75 (0.56) 1 230 240 8.3 8.3 8 1 ¼ in. GFP 25.9 (658) 17 (432) 30 (14) 300
PF10073200 4, 5 10 (0.6) 0.75 (0.56) 3 200 208 5.1 5.2 8 1 ¼ in. GFP 25.4 (645) 17 (432) 31 (14) 300
PF101012 5, 6 10 (0.6) 1.00 (0.75) 1 230 240 9.6 9.6 9 1 ¼ in. GFP 27.9 (709) 18 (457) 33 (15) 100
PF10103200 5, 6 10 (0.6) 1.00 (0.75) 3 200 208 5.5 5.5 9 1 ¼ in. GFP 27.3 (693) 18 (457) 37 (17) 300
PF102012 5, 6, 7, 8 10 (0.6) 2.00 (1.49) 1 230 240 12.1 12.1 18 1 ¼ in. SS 39.5 (1003) 22 (559) 48 (22) 100
PF102032 5, 6, 8 10 (0.6) 2.00 (1.49) 3 230 240 7.5 7.6 18 1 ¼ in. SS 37.9 (963) 20 (508) 44 (20) 300
PF10203200 5, 6, 8 10 (0.6) 2.00 (1.49) 3 200 208 8.7 8.7 18 1 ¼ in. SS 37.9 (963) 20 (508) 44 (20) 300
PF150311 15 (1.0) 0.33 (0.25) 1 115 120 8.7 8.8 3 1 ¼ in. GFP 19.5 (495) 15 (380) 23 (10) 300
PF150312 15 (1.0) 0.33 (0.25) 1 230 240 4.4 4.5 3 1 ¼ in. GFP 19.5 (495) 15 (380) 23 (10) 300
PF200511 20 (1.3) 0.50 (0.37) 1 115 120 12.3 12.5 4 1 ¼ in. GFP 22.3 (566) 18 (457) 25 (11) 300
PF200512 20 (1.3) 0.50 (0.37) 1 230 240 6.4 6.5 4 1 ¼ in. GFP 22.5 (572) 18 (457) 26 (12) 300
PF20053200 20 (1.3) 0.50 (0.37) 3 200 208 3.7 3.8 4 1 ¼ in. GFP 22.3 (566) 18 (457) 26 (12) 300
PF201012 4, 5 20 (1.3) 1.00 (0.75) 1 230 240 10.5 10.5 7 1 ¼ in. GFP 28.4 (721) 20 (508) 33 (15) 100
PF20103200 4, 5 20 (1.3) 1.00 (0.75) 3 200 208 5.8 5.9 7 1 ¼ in. GFP 27.8 (706) 20 (508) 33 (15) 300
PF201512 4, 5 20 (1.3) 1.50 (1.11) 1 230 240 12.4 12.6 9 1 ¼ in. GFP 34.0 (864) 24 (610) 41 (19) 100
PF20153200 4, 5 20 (1.3) 1.50 (1.11) 3 200 208 7.1 7.2 9 1 ¼ in. GFP 30.7 (780) 20 (508) 35 (16) 300
PF300511 30 (1.9) 0.50 (0.37) 1 115 120 11.8 11.8 3 1 ¼ in. GFP 21.3 (541) 20 (508) 28 (13) 300
PF300512 30 (1.9) 0.50 (0.37) 1 230 240 6.2 6.2 3 1 ¼ in. GFP 21.3 (541) 20 (508) 25 (11) 300
PF30053200 30 (1.9) 0.50 (0.37) 3 200 208 3.6 3.6 3 1 ¼ in. GFP 21.3 (541) 20 (508) 25 (11) 300
PF300712 30 (1.9) 0.75 (0.56) 1 230 240 8.5 8.5 5 1 ¼ in. GFP 24.8 (630) 21 (533) 29 (13) 300
PF30073200 30 (1.9) 0.75 (0.56) 3 200 208 4.9 4.9 5 1 ¼ in. GFP 24.6 (625) 21 (533) 30 (14) 300
PF301012 4 30 (1.9) 1.00 (0.75) 1 230 240 10.4 10.4 6 1 ¼ in. GFP 27.0 (686) 22 (559) 32 (15) 100
PF30103200 4 30 (1.9) 1.00 (0.75) 3 200 208 5.8 5.8 6 1 ¼ in. GFP 26.4 (671) 22 (559) 33 (15) 300
PF301512 4, 5 30 (1.9) 1.50 (1.11) 1 230 240 12.6 12.6 8 1 ¼ in. GFP 32.8 (833) 24 (610) 40 (18) 100
PF30153200 4, 5 30 (1.9) 1.50 (1.11) 3 200 208 6.9 6.9 8 1 ¼ in. GFP 29.8 (757) 22 (559) 34 (15) 300
PF301534 4, 5 30 (1.9) 1.50 (1.11) 3 460 480 2.8 2.8 8 1 ¼ in. GFP 29.5 (685) 22 (559) 34 (15) 300
PF302012 5, 6, 7 30 (1.9) 2.00 (1.49) 1 230 240 11.0 11.0 10 1 ¼ in. SS 35.5 (902) 26 (660) 44 (20) 100
PF30203200 5, 6 30 (1.9) 2.00 (1.49) 3 200 208 9.3 9.3 10 1 ¼ in. SS 34.0 (864) 24 (610) 41 (19) 300
PF303012 5, 6, 7, 8 30 (1.9) 3.00 (2.23) 1 230 240 16.8 16.8 14 1 ¼ in. SS 44.5 (1130) 33 (838) 54 (24) 100
PF303032 5, 6, 8 30 (1.9) 3.00 (2.23) 3 230 240 10.0 10.1 14 1 ¼ in. SS 44.3 (1125) 27 (686) 52 (24) 300
PF305012 5, 6, 7, 8 30 (1.9) 5.00 (3.73) 1 230 240 25.6 25.8 23 1 ¼ in. SS 66.5 (1689) 53 (1346) 82 (37) 100
PF305032 5, 6, 8 30 (1.9) 5.00 (3.73) 3 230 240 16.6 16.6 23 1 ¼ in. SS 60.8 (1544) 48 (1219) 66 (30) 300
PF30503200 5, 6, 8 30 (1.9) 5.00 (3.73) 3 200 208 18.7 18.7 23 1 ¼ in. SS 60.8 (1544) 48 (1219) 66 (30) 300
PF500511 50 (3.2) 0.50 (0.37) 1 115 120 12.1 12.1 2 2 in. SS 20.3 (516) 24 (610) 27 (12) 300
PF500512 50 (3.2) 0.50 (0.37) 1 230 240 6.2 6.2 2 2 in. SS 20.3 (516) 24 (610) 27 (12) 300
PF500532 50 (3.2) 0.50 (0.37) 3 230 240 3.0 3.0 2 2 in. SS 20.3 (516) 24 (610) 28 (13) 300
PF50053200 50 (3.2) 0.50 (0.37) 3 200 208 3.7 3.7 2 2 in. SS 20.3 (516) 24 (610) 28 (13) 300
PF500534 50 (3.2) 0.50 (0.37) 3 460 480 1.5 1.5 2 2 in. SS 20.3 (516) 24 (610) 28 (13) 300
PF500712 50 (3.2) 0.75 (0.56) 1 230 240 8.5 8.5 3 2 in. SS 23.7 (602) 25 (635) 31 (14) 300
PF500732 50 (3.2) 0.75 (0.56) 3 230 240 3.9 3.9 3 2 in. SS 23.7 (602) 25 (635) 32 (15) 300
PF50073200 50 (3.2) 0.75 (0.56) 3 200 208 4.9 4.9 3 2 in. SS 23.1 (587) 26 (660) 32 (15) 300Design gpm (L/sec)Horsepower (kW)PhaseNameplate voltageActual voltageDesign flow ampsMax ampsImpellersDischarge size and material 1Length, in. (mm)Min. liquid level, 2 in. (mm)Weight, 3 lb (kg)Rated cycles/day
Technical Data Sheet Orenco®
Orenco Systems® Inc. , 814 Airway Ave., Sutherlin, OR 97479 USA • 800-348-9843 • 541-459-4449 • www.orenco.com NTD-PU-PF-1
Rev. 2.2, © 09/14
Page 3 of 6
Specifications, 60 Hz (continued)
Pump Model
PF500734 50 (3.2) 0.75 (0.56) 3 460 480 1.8 1.8 3 2 in. SS 34.8 (884) 25 (635) 31 (14) 300
PF501012 50 (3.2) 1.00 (0.75) 1 230 240 10.1 10.1 4 2 in. SS 27.0 (686) 26 (660) 35 (16) 100
PF50103200 50 (3.2) 1.00 (0.75) 3 200 208 5.7 5.7 4 2 in. SS 26.4 (671) 26 (660) 39 (18) 300
PF501034 50 (3.2) 1.00 (0.75) 3 460 480 2.2 2.2 4 2 in. SS 26.4 (671) 26 (660) 39 (18) 300
PF5015124 50 (3.2) 1.50 (1.11) 1 230 240 12.5 12.6 5 2 in. SS 32.5 (826) 30 (762) 41 (19) 100
PF501532004 50 (3.2) 1.50 (1.11) 3 200 208 7.0 7.0 5 2 in. SS 29.3 (744) 26 (660) 35 (16) 300
PF503012 4, 5, 7, 8 50 (3.2) 3.00 (2.23) 1 230 240 17.7 17.7 8 2 in. SS 43.0 (1092) 37 (940) 55 (25) 100
PF50303200 4, 5, 8 50 (3.2) 3.00 (2.23) 3 200 208 13.1 13.1 8 2 in. SS 43.4 (1102) 30 (762) 55 (25) 300
PF503034 4, 5, 8 50 (3.2) 3.00 (2.23) 3 460 480 5.3 5.3 8 2 in. SS 40.0 (1016) 31 (787) 55 (25) 300
PF505012 5,6,7,8 50 (3.2) 5.00 (3.73) 1 230 240 26.2 26.4 13 2 in. SS 65.4 (1661) 55 (1397) 64 (29) 300
PF505032 5,6,7,8 50 (3.2) 5.00 (3.73) 3 230 240 16.5 16.5 13 2 in. SS 59.3 (1506) 49 (1245) 64 (29) 300
PF751012 75 (4.7) 1.00 (0.75) 1 230 240 9.9 10.0 3 2 in. SS 27.0 (686) 27 (686) 34 (15) 100
PF751512 75 (4.7) 1.50 (1.11) 1 230 240 12.1 12.3 4 2 in. SS 33.4 (848) 30 (762) 44 (20) 100
Specifications, 50 Hz
Pump Model
PF100552 10 (0.6) 0.50 (0.37) 1 220 230 3.9 4.1 6 1 ¼ in. GFP 23.0 (584) 17 (432) 26 (12) 300
PF100752 4, 5 10 (0.6) 0.75 (0.56) 1 220 230 6.2 6.2 9 1 ¼ in. GFP 26.8 (658) 17 (432) 30 (14) 300
PF101552 5, 6 10 (0.6) 1.50 (1.11) 1 220 230 10.5 11.4 18 1 ¼ in. SS 39.5 (1003) 22 (559) 46 (21) 300
PF300552 30 (1.9) 0.50 (0.37) 1 220 230 4.1 4.1 4 1 ¼ in. GFP 22.5 (572) 19 (483) 26 (12) 300
PF300752 30 (1.9) 0.75 (0.56) 1 220 230 6.1 6.1 5 1 ¼ in. GFP 24.8 (630) 19 (483) 29 (13) 300
PF301052 30 (1.9) 1.00 (0.75) 1 220 230 7.4 7.4 7 1 ¼ in. GFP 28.4 (721) 20 (508) 32 (15) 100
PF301552 4, 5 30 (1.9) 1.50 (1.11) 1 220 230 9.3 9.3 8 1 ¼ in. GFP 35.4 (899) 24 (610) 40 (18) 100
PF500552 50 (3.2) 0.50 (0.37) 1 220 230 4.0 4.0 2 2 in. SS 20.3 (516) 25 (635) 29 (13) 300
PF500752 50 (3.2) 0.75 (0.56) 1 220 230 6.3 6.4 3 2 in. SS 23.7 (602) 25 (635) 31 (14) 300
PF501052 50 (3.2) 1.00 (0.75) 1 220 230 7.3 7.4 4 2 in. SS 27.0 (686) 26 (660) 35 (16) 100
PF501552 50 (3.2) 1.50 (1.11) 1 220 230 9.1 9.1 5 2 in. SS 32.5 (826) 30 (762) 42 (19) 100
PF751052 75 (3.2) 1.00 (0.75) 1 220 230 7.3 7.3 4 2 in. SS 30.0 (762) 27 (686) 34 (15) 100
1 GFP = glass-filled polypropylene; SS = stainless steel. The 1 ¼-in. NPT GFP discharge is 2 7⁄8 in. octagonal across flats; the 1 ¼-in. NPT SS discharge is 2 1⁄8 in. octagonal across flats; and the
2-in. NPT SS discharge is 2 7⁄8 in. hexagonal across flats. Discharge is female NPT threaded, U.S. nominal size, to accommodate Orenco® discharge hose and valve assemblies. Consult your Orenco
Distributor about fittings to connect hose and valve assemblies to metric-sized piping.
2 Minimum liquid level is for single pumps when installed in an Orenco Biotube® Pump Vault or Universal Flow Inducer. In other applications, minimum liquid level should be top of pump. Consult
Orenco for more information.
3 Weight includes carton and 10-ft (3-m) cord.
4 High-pressure discharge assembly required.
5 Do not use cam-lock option (Q) on discharge assembly.
6 Custom discharge assembly required for these pumps. Contact Orenco.
7 Capacitor pack (sold separately or installed in a custom control panel) required for this pump. Contact Orenco.
8 Torque locks are available for all pumps, and are supplied with 3-hp and 5-hp pumps. Design gpm (L/sec)Horsepower (kW)PhaseNameplate voltageActual voltageDesign flow ampsMax ampsImpellersDischarge size and material 1Length, in. (mm)Min. liquid level, 2 in. (mm)Weight, 3 lb (kg)Rated cycles/day
Technical Data SheetOrenco®
Orenco Systems® Inc. , 814 Airway Ave., Sutherlin, OR 97479 USA • 800-348-9843 • 541-459-4449 • www.orenco.com NTD-PU-PF-1
Rev. 2.2, © 09/14
Page 4 of 6
Materials of Construction
Discharge Glass-filled polypropylene or stainless steel
Discharge bearing Engineered thermoplastic (PEEK)
Diffusers Glass-filled PPO (Noryl GFN3)
Impellers Celcon® acetal copolymer on 10-, 20, and 30-gpm models; 50-gpm impellers are Noryl GFN3
Intake screen Polypropylene
Suction connection Stainless steel
Drive shaft 7/16 inch hexagonal stainless steel, 300 series
Coupling Sintered stainless steel, 300 series
Shell Stainless steel, 300 series
Motor Franklin motor exterior constructed of stainless steel. Motor filled with deionized water and propylene glycol for constant lubrication. Hermetically
sealed motor housing ensures moisture-free windings. All thrust absorbed by Kingsbury-type thrust bearing. Rated for continuous duty. Single-
phase motors and 200 and 230 V 3-phase motors equipped with surge arrestors for added security. Single-phase motors through 1.5 hp
(1.11 kW) have built-in thermal overload protection, which trips at 203-221˚ F (95-105˚ C).
Using a Pump Curve
A pump curve helps you determine the best pump for your system. Pump curves show the relationship between flow (gpm or L/sec) and pressure
(total dynamic head, or TDH), providing a graphical representation of a pump’s optimal performance range. Pumps perform best at their nominal
flow rate — the value, measured in gpm, expressed by the first two numerals in an Orenco pump nomenclature. The graphs in this section show
optimal pump operation ranges with a solid line. Flow flow rates outside of these ranges are shown with a dashed line. For the most accurate
pump specification, use Orenco’s PumpSelect™ software.
Pump Curves, 60 Hz Models
Total dynamic head (TDH) in feetFlow in gallons per minute (gpm)
24 81012141660
800
700
600
500
400
300
200
100 PF1005-FC
w/ ¼" flow
controller
PF10 Series, 60 Hz, 0.5 - 2.0 hp
PF1007
PF1010
PF1020
PF1005
Total dynamic head (TDH) in feetFlow in gallons per minute (gpm)
36 12 15 18 21 2490
160
140
120
100
80
60
40
20
0
PF1503
PF15 Series, 60 Hz, 0.3 hp
Technical Data Sheet Orenco®
Orenco Systems® Inc. , 814 Airway Ave., Sutherlin, OR 97479 USA • 800-348-9843 • 541-459-4449 • www.orenco.com NTD-PU-PF-1
Rev. 2.2, © 09/14
Page 5 of 6Total dynamic head (TDH) in feetFlow in gallons per minute (gpm)
5102025303540150
400
350
300
250
200
150
100
50
0
PF2005
PF2010
PF2015
PF20 Series, 60 Hz, 0.5 - 1.5 hp
Total dynamic head (TDH) in feetFlow in gallons per minute (gpm)
510202530354045150
800
900
700
600
500
400
300
200
100
0
PF3005
PF3007
PF3010
PF3015
PF3020
PF3030
PF3050 PF30 Series, 60 Hz, 0.5 - 5.0 hp
Total dynamic head (TDH) in feetFlow in gallons per minute (gpm)
450
400
350
300
250
200
150
100
50
0 10 02040506070809030
PF5050
PF5030
PF5015
PF5010
PF5007
PF5005
PF50 Series, 60 Hz, 0.5 - 5.0 hp
Total dynamic head (TDH) in feetFlow in gallons per minute (gpm)
10 20 40 50 60 70 80 90 100300
80
90
100
70
60
50
40
30
20
10
0
PF75 Series, 60 Hz, 1.0 - 1.5 hpPF7515
PF7510
60 Hz Models (continued)
Technical Data SheetOrenco®
Orenco Systems® Inc. , 814 Airway Ave., Sutherlin, OR 97479 USA • 800-348-9843 • 541-459-4449 • www.orenco.com NTD-PU-PF-1
Rev. 2.2, © 09/14
Page 6 of 6Total dynamic head (TDH) in metersTotal dynamic head (TDH) in feet, nominalFlow in liters per second (L/sec)
Flow in gallons per minute (gpm), nominal
0.90.80.70.60.50.40.30.20.10
13119.57.96.34.83.21.6
120
100
80
60
40
20
0
160
180
140
394
328
262
197
131
66
525
459
PF100552
PF100752
PF101552
PF1005-FC
w/ 6mm flow
controller
PF10 Series, 50 Hz, 0.37 - 1.11 kW
Total dynamic head (TDH) in metersTotal dynamic head (TDH) in feet, nominalFlow in liters per second (L/sec)
Flow in gallons per minute (gpm), nominal
0.8 1.2 1.6 2.0 2.40.40
13 19 25 326.3
60
80
100
120
40
20
0
197
262
328
131
66
PF301552
PF301052
PF300752
PF300552
PF30 Series, 50 Hz, 0.37 - 1.11 kW
Total dynamic head (TDH) in metersTotal dynamic head (TDH) in feet, nominalFlow in liters per second (L/sec)
Flow in gallons per minute (gpm), nominal
0.5 1.0 2.0 2.5 3.0 3.5 4.0 4.51.50
7.9 16 32 40 48 56 6324
40
45
35
30
25
20
15
10
5
0
131
115
98
82
66
49
33
16
PF501552
PF501052
PF500752
PF500552
PF50 Series, 50 Hz, 0.37 - 1.11 kW
Total dynamic head (TDH) in metersTotal dynamic head (TDH) in feet, nominalFlow in liters per second (L/sec)
Flow in gallons per minute (gpm), nominal
0.6 1.2 2.4 3.0 3.6 4.2 5.44.8 6.01.80
10 19 4838 57 67 76 8629
27
30
24
21
18
15
12
9
6
3
0
89
79
69
59
49
39
30
20
PF751052
PF75 Series, 50 Hz, 0.75 kW
Pump Curves, 50 Hz Models
Introduction
Orenco’s automatic distributing valve assemblies, pressurized with small high-head effluent
pumps, are useful for distributing effluent to multiple zones. These zones can be segments
of sand filter manifolds, drainfields, or other effluent distribution systems. Distributing
valve assemblies can substantially simplify the design and installation of a distribution sys-
tem and reduce installation costs. This is particularly true where a distributing valve assem-
bly is used instead of multiple pumps and/or electrically operated valves. Additionally, a
reduction in long term operation and maintenance costs is realized due to a reduced size
and/or number of pumps. More even distribution can be achieved on sloping sites by zoning
laterals at equal elevations. This eliminates drainback to lower lines and the unequal distrib-
ution of effluent that occurs at the beginning of a cycle.
Valve Operation
The valve itself has only a few moving parts, requires no electricity, and alternates automati-
cally each cycle. Refer to Figure 1 for the following valve operation description. The flow
of the incoming effluent forces the rubber flap disk 1 to seat against the valve bottom 2.
The opening 3 in the rubber flap disk aligns with an opening in the valve bottom to allow
flow to only one valve outlet. The stem 4 houses a stainless steel spring which pushes the
rubber flap disk away from the valve bottom after the flow of effluent stops. The stem acts
as a cam follower and rotates the rubber flap disk as the stem is raised and lowered through
the cam 5. The force from the flow of effluent pushes the stem down through the cam and
the stainless steel spring pushes the stem back up through the cam when the flow of effluent
stops. Each linear motion of the stem allows the rubber flap disk to rotate half the distance
necessary to reach the next outlet. When there is no flow, the rubber flap disk is in the “up”
position and is not seated against the valve bottom.
5
4
3
2
1
Inlet
Outlets
Figure 1:
6000 Series Valve
Orenco Automatic Distributing
Valve Assemblies
NTP-VA-1
Rev. 1.2, © 11/03
Orenco Systems®, Inc.
Page 1 of 6
For Wastewater Effluent Systems
This article may describe design criteria that was in effect at the time the article was written. FOR CURRENT DESIGN
CRITERIA, call Orenco Systems, Inc. at 1-800-348-9843.
The Distributing Valve Assembly
The Orenco Automatic Distributing Valve Assembly combines the distributing valve itself and sever-
al other components to give a complete preassembled unit that is easy to install, monitor, and main-
tain. Figure 2 shows a complete assembly. Because distributing valves with several outlets can be
difficult to line up and glue together in the field, the discharge lines in the assemblies are glued in
place at Orenco. The unions (1) allow removal and maintenance of the valve. The clear PVC pipe
sections (2) give a visual check of which discharge line is being pressurized. The inlet ball valve (3)
allows a quick, simple method to test for proper valve cycling. The ball valve also stops the flow of
effluent in case the pump is activated unexpectedly during maintenance or inspection. Check valves
may be necessary on the discharge lines. Use of check valves is discussed in the valve positioning
section.
Valve Assembly Hydraulics
Liquid flowing through the valve assembly must pass through fairly small openings and make several
changes in direction. Because of this, headlosses through the valve assembly are fairly high. Table 1
gives the headloss equations for several different assemblies and Figure 3 shows the graphical repre-
sentations of these equations. Orenco recommends that high-head turbine pumps be used to pressur-
ize the valve assemblies to ensure enough head is available for proper system operation. High-head
turbine pumps are also recommended because the use of a distributing valve usually requires more
frequent pump cycling. The high-head turbine pumps are designed for high cycling systems and will
outlast conventional effluent pumps by a factor of 10 or more in a high cycling mode. Furthermore,
the high-head turbine pump intake is 12 inches or more above the bottom of the pump and tends to
prevent any settled solids from being pumped into the distribution valve and obstructing its opera-
tion. A minimum flow rate through the distributing valve is required to ensure proper seating of the
rubber flap disk. Minimum flow rates for the various models are given in Table 1.
Figure 2:
Orenco Distributing Valve Assembly (6000 Series Valve)
NTP-VA-1
Rev. 1.2, © 11/03
Orenco Systems®, Inc.
Page 2 of 6
Table 1. Automatic Distributing Valve Assembly Headloss Equations
Model Series Equation Operating Range (gpm)
V4400A HL = 0.085 x Q1.45 10 - 40
V4600A HL = 0.085 x Q1.58 10 - 25
V6400A HL = 0.0045 x Q2 + 3.5 x (1 - e-0.06Q) 15 - 70
V6600A HL = 0.0049 x Q2 + 5.5 x (1 - e-0.1Q) 15 - 70
NTP-VA-1
Rev. 1.2, © 11/03
Orenco Systems®, Inc.
Page 3 of 6
0
5
10
15
20
25
30
35
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
Flow (gpm)Head Loss Through Assembly (ft.)V4600A
V4400A
V6600A
V6400A
The Pumping System
Although the distributing valve was designed for the irrigation industry, it has started to gain fairly
wide acceptance in the effluent pumping industry. However, because of the mechanical movements
of the valve, it is necessary to take steps to prevent solids from reaching the distributing valve that
may impede the operation of the valve. Orenco Biotube®Pump Vaults — when properly sized and
installed — provide the necessary protection to prevent valve malfunction. The Biotube®pump vault
accepts effluent only from the clear zone between a tank’s scum and sludge layers and then filters
this effluent through a very large surface area screen cartridge. Without this protection in effluent
systems, the valve has very little chance of reliable long-term operation.
Figure 3:
Automatic distributing valve assembly headloss curves
Valve Positioning
The physical position of the valve in relation to the pump and the discharge point is very important
for proper valve operation. The most reliable operation occurs when the valve is placed at the high
point in the system and as close to the pump as possible. The transport line between the pump and
valve should be kept full if possible. If the line is empty at the beginning of each cycle, pockets of
air during filling can cause random rotation of the valve. The valve is particularly vulnerable to this
erratic rotation with empty lines that are long and not laid at a constant grade. An ideal valve loca-
tion is shown in Figure 4.
If the final discharge point is more than about 2 feet above the valve and the system does not drain
back into the dosing tank, check valves should be installed on the lines immediately following the
valve and a pressure release hole or line should be installed just prior to the valve. This pressure
release hole or line can go into a return line to the dosing tank or to a “minidrainfield” near the valve.
In order for the valve to rotate reliably, no more than about 2 feet of head should remain against the
valve to allow the rubber flap disk to return to its up position. In many cases, it may take from one
minute to several minutes for the pressure in the valve to be lowered enough for proper rotation to
occur. Special care should be taken when installing systems controlled by programmable timers to
ensure cycling does not occur too rapidly. Figure 5 illustrates a valve assembly using check valves.
Pumping downhill to the valve should be avoided unless the transport line is very short and the ele-
vation between the discharge line out of the tank and the valve is less than about 2 feet. If the valve
is located many feet below the dosing tank, random cycling may occur while the transport line drains
through the valve at the end of the cycle. A pressure sustaining valve located just before the distrib-
uting valve may overcome this problem in some instances.
Dosing Tank
Discharge Laterals
Distributing Valve Assembly
Transport Line
Figure 4:
Ideal valve location
NTP-VA-1
Rev. 1.2, © 11/03
Orenco Systems®, Inc.
Page 4 of 6
System Startup
Refer to the Hydrotek Valve booklet that is provided with the distributing valve assembly for the
sequencing of the valve outlets. The transport line should always be flushed with clean water before
installing the valve. Any sand, gravel, or other foreign objects that may have been in the pipe during
installation can easily become lodged in the distributing valve, causing malfunction.
With the pump running, alternately close and open the ball valve on the distributing valve assembly
to check proper rotation of the valve. (Note: If check valves are used on the lines after the distribut-
ing valve, the pump may need to be turned on and off to allow the pressure to be released from the
valve.) If visual operation of which zone is operating is not possible, watch the clear pipe on each
line for indication of which zone is operating.
Maintenance
Annually check for proper operation by following procedures listed in the Hydrotek Valve booklet
and system startup procedures listed above.
Troubleshooting
1. PROBLEM: Valve does not change or cycle to next zone or outlet
CAUSE: The stem and disk assembly is not rotating when water flow is turned off and then
back on.
SOLUTION 1: Ensure that there is no debris inside the cam. Clean and carefully reinstall the cam.
SOLUTION 2: If fewer than the maximum number of outlets are being used, check the installation
of the cam. Ensure that the stem and disk assembly is not being held down by an
improperly installed cam. Refer to the cam replacement instructions.
h
Check Valves if h>2'-0"
Distributing Valve Assembly
Transport Line
Dosing Tank
Pressure Release
Line if h>2'-0"
Discharge Laterals
Figure 5:
Valve assembly below final discharge point
NTP-VA-1
Rev. 1.2, © 11/03
Orenco Systems®, Inc.
Page 5 of 6
SOLUTION 3: Remove the valve top and check for proper movement of stem and disk assembly.
Check for and remove any debris or foreign objects that may jam or retard the
movement of the disk.
SOLUTION 4: Check for freedom of movement of stem and disk assembly up and down over the
center pin in bottom of valve. Scale deposits may build up on the pin and hold stem
and disk assembly down. Clean pin and again check for freedom of movement.
SOLUTION 5: Be sure that all operating outlets are not capped and that the flow to operating zones
is not restricted in any manner. This would cause pressure to build up in the valve
and lock the stem and disk assembly in the down position.
SOLUTION 6: The backflow of water from uphill lines may be preventing the valve from cycling
properly. This can happen when the valve is placed too far below an elevated line.
If the valve cannot be placed close to the high point of the system, a check valve
should be installed near the valve in the outlet line that runs uphill from the valve
and a drain line installed just prior to the valve to relieve the pressure.
2. PROBLEM: Water comes out of all the valve outlets
CAUSE: Stem and disk assembly not seating properly on valve outlet.
SOLUTION 1: Check for sufficient water flow. A minimum flow rate is required to properly seat
the disk as shown in Table 1.
SOLUTION 2: Remove the valve top and check the inside walls to ensure that nothing is interfering
with the up and down movement of the stem and disk assembly inside the valve.
SOLUTION 3: Make sure that the operating outlets are not capped and that the flow to the operat-
ing zones are not restricted in any manner.
3. PROBLEM: Valve skips outlets or zones
CAUSE: Pumping into an empty transport line — especially downhill — may cause the valve
to skip outlets from pockets of air allowing the rubber flap disk to raise during a
cycle.
SOLUTION 1: Keep the transport line full.
SOLUTION 2: If the line must remain empty between cycles, use a larger diameter transport line
laid at a constant grade to prevent air pockets from forming.
CAUSE: The stem and disk assembly is being advanced past the desired outlet.
SOLUTION 1: Ensure that the correct cam for the desired number of zones is installed and that the
outlet lines are installed to the correct outlet ports of the valve as indicated by the
zone numbers on the top of the cam.
NTP-VA-1
Rev. 1.2, © 11/03
Orenco Systems®, Inc.
Page 6 of 6
Distributing Valves
General
Orenco’s Automatic Distributing Valve Assemblies are
mechanically operated and sequentially redirect the
pump’s flow to multiple zones or cells in a distribution
field. Valve actuation is accomplished by a combination
of pressure and flow. Automatic Distributing Valve
Assemblies allow the use of smaller horsepower pumps
on large sand filters and drainfields. For example, a large
community drainfield requiring 300 gpm can use a six-line
Valve Assembly to reduce the pump flow rate requirement
to only 50 gpm.
Orenco only warrants Automatic Distributing Valves when
used in conjunction with High-Head Effluent Pumps with
Biotube®Pump Vaults to provide pressure and flow
requirements, and to prevent debris from fouling valve
operation. An inlet ball valve and a section of clear pipe
and union for each outlet are provided for a complete
assembly that is easy to maintain and monitor. Ideal
valve location is at the high point in the system. Refer to
Automatic Distributing Valve Assemblies (NTP-VA-1) for
more information.
Standard Models
V4402A, V4403A, V4404A, V4605A, V4606A, V6402A, V6403A,
V6404A, V6605A, V6606A.
Nomenclature
Submittal
Data Sheet
Side View
ball valve
elbow
Top View
coupling
clear pipe
distributing valve
union
Bottom View
elbows
Specifications
Materials of Construction
All Fittings: Sch. 40 PVC per ASTMspecification
Unions: Sch. 80 PVCper ASTMspecification
Ball Valve: Sch. 40 PVCper ASTMspecification
Clear Pipe: Sch. 40 PVCper ASTMspecification
V4XXX Distributing Valves: High-strength noncorrosive ABSpolymer and stainless steel
V6XXX Distributing Valves: High-strength noncorrosive ABSpolymer, stainless steel, and die cast metal
NSU-SF-VA-1
Rev. 3.0, © 4/03
Page 1 of 2
Applications
Automatic Distributing Valve Assemblies are used to pressurize
multiple zone distribution systems including textile filters, sand
filters and drainfields.
V
Indicates assembly
Model series:
44 = 4400 series (2-4 outlets)
46 = 4600 series (5-6 outlets)
64 = 6400 series (2-4 outlets)
66 = 6600 series (5-6 outlets)
Distributing valve
Number of active outlets
A
Distributing Valves (continued)
Flow (gpm)Head Loss Through Assembly (ft.)0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
0
5
10
15
20
25
30
35
V4400A
V6600A
V6400A
V4600A
NSU-SF-VA-1
Rev. 3.0, © 4/03
Page 2 of 2
Model Inlet Size (in.) Outlets Size (in.) Flow range (gpm) Max Head (ft.) Min. Enclosure
V4402A 1.25 1.25 10 - 40 170 VB1217
V4403A 1.25 1.25 10 - 40 170 VB1217
V4404A 1.25 1.25 10 - 40 170 VB1217
V4605A 1.25 1.25 10 - 25 170 RR2418
V4606A 1.25 1.25 10 - 25 170 RR2418
V6402A 1.5 1.5 15 - 100 345 RR2418
V6403A 1.5 1.5 15 - 100 345 RR2418
V6404A 1.5 1.5 15 - 100 345 RR2418
V6605A 1.5 1.5 15 - 100 345 RR2418
V6606A 1.5 1.5 15 - 100 345 RR2418
The Quick4® Plus Standard Chamber
The Quick4 Plus Standard Chamber
offers maximum strength through
its two center structural columns.
This chamber can be installed in
a 36-inch-wide trench. Like the
original line of Quick4 chambers,
it offers advanced contouring
capability with its Contour Swivel
Connection™ which permits turns
up to 15-degrees, right or left. It is
also available in four-foot lengths to
provide optimal installation flexibility.
The Quick4 Plus All-in-One 12
Endcap, and the Quick4 Periscope
are available with this chamber,
providing increased flexibility in
system configurations.
Maximum Strength
APPROVED in _____________________________________________
Quick4 Plus™ Series
Quick4 Plus All-in-One 12 Endcap Benefits:
• May be used at the end of chamber
row for an inlet/outlet or can be
installed mid-trench
• Mid-trench connection feature allows
construction of chamber rows with
center feed, as an alternative to
inletting at the ends of chamber rows
• Center-feed connection allows for
easy installation of serial distribution
systems
• Pipe connection options include
sides, ends or top
Quick4 Plus All-in-One Periscope Benefits:
• Allows for raised invert installations
• 180° directional inletting
• 12” raised invert is ideal for serial
applications
Certified by the International
Association of Plumbing
and Mechanical
Officials (IAPMO)
Quick4 Plus Standard Chamber Specifications
Size
34”W x 53”L x 12”H
(864 mm x 1346 mm x 305 mm)
Effective Length
48” (1219 mm)
Louver Height
8” (203 mm)
Storage Capacity
47 gal (178 L)
Invert Height
0.6” (15 mm), 5.3” (135 mm),
8.0” (203 mm), 12.7” (323 mm)
Quick4 Plus Standard Chamber Benefits:
• Two center structural columns offer increased stability and superior strength
• Advanced contouring connections
• Latching mechanism allows for quick installation
• Four-foot chamber lengths are easy to handle and install
• Supports wheel loads of 16,000 lbs/axle with 12” of cover
Contact Infiltrator Water Technologies’ Technical Services Department for assistance at 1-800-221-4436
4 Business Park Road
P.O. Box 768
Old Saybrook, CT 06475
860-577-7000 • Fax 860-577-7001
1-800-221-4436
www.infiltratorwater.com
U.S. Patents: 4,759,661; 5,017,041; 5,156,488; 5,336,017; 5,401,116; 5,401,459; 5,511,903; 5,716,163; 5,588,778; 5,839,844 Canadian Patents: 1,329,959; 2,004,564 Other patents pending.
Infiltrator, Equalizer, Quick4, and SideWinder are registered trademarks of Infiltrator Water Technologies. Infiltrator is a registered trademark in France. Infiltrator Water Technologies is a registered trademark in Mexico.
Contour, MicroLeaching, PolyTuff, ChamberSpacer, MultiPort, PosiLock, QuickCut, QuickPlay, SnapLock and StraightLock are trademarks of Infiltrator Water Technologies.
PolyLok is a trademark of PolyLok, Inc. TUF-TITE is a registered trademark of TUF-TITE, INC. Ultra-Rib is a trademark of IPEX Inc.
© 2013 Infiltrator Water Technologies, LLC. All rights reserved. Printed in U.S.A.PLUS05 0713
Quick4 Plus™ Series
INFILTRATOR WATER TECHNOLOGIES STANDARD LIMITED WARRANTY
(a) The structural integrity of each chamber, endcap and other accessory manufactured by
Infiltrator (“Units”), when installed and operated in a leachfield of an onsite septic system in
accordance with Infiltrator’s instructions, is warranted to the original purchaser (“Holder”) against
defective materials and workmanship for one year from the date that the septic permit is issued for
the septic system containing the Units; provided, however, that if a septic permit is not required by
applicable law, the warranty period will begin upon the date that installation of the septic system
commences. To exercise its warranty rights, Holder must notify Infiltrator in writing at its Corporate
Headquarters in Old Saybrook, Connecticut within fifteen (15) days of the alleged defect. Infiltrator
will supply replacement Units for Units determined by Infiltrator to be covered by this Limited
Warranty. Infiltrator’s liability specifically excludes the cost of removal and/or installation
of the Units.
(b) THE LIMITED WARRANTY AND REMEDIES IN SUBPARAGRAPH (a) ARE EXCLUSIVE.
THERE ARE NO OTHER WARRANTIES WITH RESPECT TO THE UNITS, INCLUDING NO
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE
(c) This Limited Warranty shall be void if any part of the chamber system is manufactured by
anyone other than Infiltrator. The Limited Warranty does not extend to incidental, consequential,
special or indirect damages. Infiltrator shall not be liable for penalties or liquidated damages,
including loss of production and profits, labor and materials, overhead costs, or other losses or
expenses incurred by the Holder or any third party. Specifically excluded from Limited Warranty
coverage are damage to the Units due to ordinary wear and tear, alteration, accident, misuse,
abuse or neglect of the Units; the Units being subjected to vehicle traffic or other conditions which
are not permitted by the installation instructions; failure to maintain the minimum ground covers
set forth in the installation instructions; the placement of improper materials into the system
containing the Units; failure of the Units or the septic system due to improper siting or improper
sizing, excessive water usage, improper grease disposal, or improper operation; or any other
event not caused by Infiltrator. This Limited Warranty shall be void if the Holder fails to comply
with all of the terms set forth in this Limited Warranty. Further, in no event shall Infiltrator be
responsible for any loss or damage to the Holder, the Units, or any third party resulting from
installation or shipment, or from any product liability claims of Holder or any third party. For this
Limited Warranty to apply, the Units must be installed in accordance with all site conditions
required by state and local codes; all other applicable laws; and Infiltrator’s installation instructions.
(d) No representative of Infiltrator has the authority to change or extend this Limited Warranty.
No warranty applies to any party other than the original Holder.
The above represents the Standard Limited Warranty offered by Infiltrator. A limited number of
states and counties have different warranty requirements. Any purchaser of Units should contact
Infiltrator’s Corporate Headquarters in Old Saybrook, Connecticut, prior to such purchase, to
obtain a copy of the applicable warranty, and should carefully read that warranty prior to the
purchase of Units.
Quick4 Plus Standard Chamber ___________________________________________________________________________________
Quick4 Plus All-in-One 12 Endcap ________________________________________________________________________________
Quick4 Plus All-in-One Periscope ________________________
EFFECTIVE LENGTH48"
12"
34"
QUICK4 PLUS
ALL-IN-ONE PERISCOPE
(360° SWIVEL)
12.7" INVERT
PRESSURIZED PIPE DRILL
POINTS LOCATIONS
(2 PLACES)
33"
18"
8" INVERT
13"
EFFECTIVE LENGTH48"
12"
34"
QUICK4 PLUS
ALL-IN-ONE PERISCOPE
(360° SWIVEL)
12.7" INVERT
PRESSURIZED PIPE DRILL
POINTS LOCATIONS
(2 PLACES)
33"
18"
8" INVERT
13" FRONT VIEW SIDE VIEW
EFFECTIVE LENGTH48"
12"
34"
QUICK4 PLUS
ALL-IN-ONE PERISCOPE
(360° SWIVEL)
12.7" INVERT
PRESSURIZED PIPE DRILL
POINTS LOCATIONS
(2 PLACES)
33"
18"
8" INVERT
13"
6"
5"9"
NOT TO SCALE05/20/2015EMB1 of 1DFHDrawn by:Scale:Checked by:Sheet:Date:INFILTRATOR WATER TECHNOLOGIES4 Business Park Rd. Old Saybrook, CT 06475(800) 221-4436INFILTRATOR®water technologiesQUICK4 PLUS STANDARD CHAMBERTYPICAL TRENCH DETAILSECTION VIEW(36" WIDE TRENCH)8" INVERT34"6" COVER (min.)12" COVER H-1012"* LENGTH AND NUMBER OF TRENCHES DETERMINED BY DESIGN.34"SPACING PER CODENATIVE BACKFILLTOPSOILINFILTRATOR WATER TECHNOLOGIESQUICK4 PLUS STANDARD CHAMBERTYPICAL TRENCH DETAILSECTION VIEW(NOT TO SCALE)PRESSURE PIPEIF REQ'D, PER DESIGN
Orenco Systems® Inc. , 814 Airway Ave., Sutherlin, OR 97479 USA • 800-348-9843 • 541-459-4449 • www.orenco.com NTD-SF-OS-1
Rev. 1.1, © 09/14
Page 1 of 1
Orifice Shields
Technical Data SheetOrenco®
General
Orenco Orifice Shields snap-fit onto laterals. They may be placed on
top of or beneath a lateral, depending on the location of the orifice.
Orifice shields are covered by method-of-use patent # 5,360,556.
Standard Models
OS075, OS100, OS125, OS150, OS200
Product Code Diagram
Material of Construction
PVC per ASTM D-1784
Physical Specifications
Model Shield O.D. Lateral pipe O.D.
in. (mm) in. (mm)
OS075 3.5 (89) 1.05 (27)
OS100 3.5 (89) 1.315 (33)
OS125 3.5 (89) 1.66 (42)
OS150 4.5 (114) 1.90 (48)
OS200 4.5 (114) 2.375 (60)
Applications
Orenco® Orifice Shields are used in a pressurized distribution system
to protect the orifices from backfill debris that might cause orifice
blockage.
Orifice shield installed on lateral pipe, standard configuration
Shield
Orifice
Cutaway view, standard configuration
Shield
Orifice
Cutaway view, cold weather configuration
OS
Lateral pipe size, nominal:
075 = 0.75 in. (20 mm)
100 = 1.00 in. (25 mm)
125 = 1.25 in. (32 mm)
150 = 1.50 in. (40 mm)
200 = 2.00 in. (50 mm)
Orifice shield
Item#
SEK- Orenco® Flushing Assemblies
Flushing Assemblies
Orenco® flushing assemblies provide easy
access for lateral maintenance. Flushing
assembly kits include a PVC sweep with ball
valve and a polyethylene valve box enclosure.
Orenco® flushing assemblies are available in the
following sizes:
• 1” diameter
• 1.25” diameter
• 1.5” diameter
• 2" diameter
Valve Boxes
Orenco® valve boxes are used to provide access
to flushing assemblies. Constructed of
polyethylene.
Valve Box, 7-in. diameter round enclosure
Note: Kits include VB7 valve box enclosure.
(719) 395-6764
Fax: (719) 395-3727
28005 County Road 317
P.O. Box 925
Buena Vista, CO 81211
Water &
Wastewater
• Systems
• Products
• Service Website: http://valleyprecast.com/
Email: frontdesk@valleyprecast.com
NORSK BUILDERS LTD
85 WIND RIVER RD
CARBONDALE, CO 81623
Account: R046746
Tax Area: 007 - EL JEBEL (AREA) -
007
Acres: 2.004
Parcel: 2391-284-07-025
Situs Address:
000577 FOX RUN DR
EL JEBEL AREA, 0
Value Summary
Value By:Market Override
Land (1)$228,000 N/A
Total $228,000 $228,000
Legal Description
Subdivision: FOX RUN MEADOWS PUD Lot: 16
R646687 MAP 02-09-98
R646691 QCD 02-09-98
R647031 EAS 02-11-98
R647032 DEC 02-11-98
R656189 DEC 05-13-98
Sale Data
Doc. #Sale Date Deed Type Validity Verified Sale Price Ratio Adj. Price Ratio Time Adj.
Price
Ratio
201907954 05/31/2019 WD N $280,000 81.43 $280,000 81.43 $280,000 81.43
200608361 03/31/2006 WD QV Y $475,000 48.00 $475,000 48.00 $475,000 48.00
765464 08/13/2001 WD UV Y $325,000 70.15 $325,000 70.15 $325,000 70.15
Land Occurrence 1
Abstract Code 0400 - VACANT PUD LOTS Percentage 100.0
Use Code 1000 - RESIDENTIAL Neighborhood 1010.3 - FOX RUN MEADOWS
Land Code 9057 - FOX RUN MEADOWS Super Neighborhood 900 - BASALT / EL JEBEL AREA
Size 87320 Location Adjustment 120
SubArea ACTUAL EFFECTIVE HEATED FOOTPRINT
Land L 1
Total 1.00
Value Rate Rate Rate Rate
$228,000 228,000.00
Property Record Card
Eagle County
A#: R046746 P#: 239128407025 As of: 11/20/2019 Page 1 of 2
Abstract Summary
Code Classification Actual Value Taxable
Value
Actual
Override
Taxable
Override
0400 VACANT PUD LOTS $228,000 $66,120 NA NA
Total $228,000 $66,120 NA NA
Property Record Card
Eagle County
A#: R046746 P#: 239128407025 As of: 11/20/2019 Page 2 of 2